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Statistical Approaches to Ozone Trend Detection
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STATISTICS

1.0 CURRENT STATUS OF STATISTICAL ANALYSES

The statistical analyses compiled by Reinsel, Tiao, and their coworkers provide the most

comprehensive work on trend direction. This group's efforts represent a long-term involvement
with ozone data. Their methods have been published in peer-reviewed statistical journals

(Reinsel and Tiao, 1987), and previous discrepancies with other approaches have been recon-

ciled (Hill et al., 1986). Stemming from this statistical work are some recent analyses concerning

seasonal trends in total ozone for some of the stations in the Dobson network, reported in

Chapter 4 of this report. There is a substantial amount of analysis of ozone measurements in the

meteorological literature, such as the work by Angell and Korshover (1983b). However, because

such studies do not adequately adjust for the short-term correlation in ozone over time, their
results are of limited value for drawing conclusions about trends in ozone. For these reasons, this

review will concentrate on the methods developed by Reinsel and Tiao.

1.1 Ground-Based Total Column Ozone

The most complete statistical analysis of ground-based ozone measurements is by Reinsel et

al. (1987). Based on the measurements of a global network of 36 Dobson spectrophotometers, an

average trend of - 0.026 + 0.092 percent per year I was estimated over the period 1970--19842.

Perhaps the most important aspect of interpreting these results is to distinguish between the

average trend associated with these 36 locations and a global trend in total column ozone. They

need not be the same. Although satellite data (see Section 1.3) suggest that trend analysis based

on the Dobson network is representative of a global trend, more investigation in this area is
needed. At present it is uncertain how to extrapolate the average trend among the Dobson

network to a global trend for the entire atmosphere.

In order to discuss the assumptions that lead to the average trend cited above and to compare

this analysis with other work, it is helpful to describe the statistical model used by Reinsel and
Tiao. This model accounts for several factors that influence trend detection: the seasonal

behavior of ozone, the relationship of ozone with the solar activity, and short-term auto-

correlation within the ozone series. Let Yt represent the monthly average total ozone recorded
from a particular Dobson station. This observation is assumed to have the following

decomposition:

Y, = + S, + o X, + + iV,. (1)

In the above expression, _ represents a mean level, St is a seasonal component, Xt is a ramp

function modeling a linear trend in ozone beginning in 1970, Zt is the monthly average of 10.7 cm

solar flux (or a smoothed version of it), and, finally, Nt is a random variable representing the

short-term variation in ozone. The parameter _ represents the trend in ozone. Using this

statistical model and some assumptions on the short-term variation, it is possible to estimate w
and also derive a measure of the uncertainty in this estimate.

It is well accepted that the monthly fluctuations in ozone are not independent of one another
and tend to be positively correlated. One way of accounting for this behavior is to assume that

1 In this appendix all +--limits correspond to 95 percent confidence intervals.

2 This trend estimate has been updated to -0.05 + 0.07 percent per year during the longer period of 1970--1986for a
network of 43 Dobson stations (Reinsel, 1988, personal communication).
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STATISTICS

{Nt} is approximated by an autoregressive time series (see Sections 2.4, 2.5, and 3.3 for more

detail). Another approach using spectral analysis is given by Bloomfield et al. (1983). This part of

the statistical model is necessary in order to obtain reliable measures of uncertainty for the trend
estimate. Unfortunately, the trend estimates reported by Angell and Korshover (1983b) and

Heath (I986) based on ordinary least-squares are of unknown accuracy because the standard

errors (SE's) do not allow for autocorrelation. This issue is discussed at length in Section 2.

The other components in this model are also related to the estimate of ca. Modeling seasonality
of the ozone measurements reduces the variance in the data and thus improves the accuracy of the

trend estimate. The inclusion of the solar flux reduces bias in the estimate of caby distinguishing
behavior in ozone due to solar cycle from other long-term trends.

The statistical model described above is used by Reinsel and Tiao to obtain trend estimates for

each station. Using a random effects model to describe variation between stations, these

estimates are combined to yield an average trend for the Dobson network. In order to be able to

interpret this estimated average trend, this random effects model will be briefly described. The
36 stations can be divided into seven geographic regions (see Table 1, from Hill et al., 1986). Let

cai,j denote the actual trend in total ozone for the ith station in the jth region. This trend is
assumed to satisfy the equation

cai,j = ca _- Olj "_ _i,j

where ca is the actual "global" trend in ozone, ay is a zero mean random variable that reflects the

variability in trends between different regions, and/3i,j is a zero mean random variable that

reflects the variability of trends within a region. It should be noted that the term/3ij not only
represents variability due to meteorological effects but also accounts for spurious trends such as

calibration problems for particular stations. With this decomposition, the estimated trend for a

particular station can be expressed as

_Oi, j : ca Jr- Ogj q- f_i,j "4-Ei, j

where El, j is the error in the trend estimate due to the variability of the ozone within a station's
record.

This "random effects" model can be used to derive an estimate for co that is a weighted
average of the individual trend estimates; a standard error for this estimate can also be

calculated. This approach for combining individual trend estimates has an advantage over a

simple average because it adjusts for correlation among stations within the same region. The

spatial correlation implied by this model, however, has a simple structure that may not be a good

approximation of the ozone field. It assumes that all stations within a region are equally

correlated while stations in different regions are independent. A more serious problem is

interpreting the parameter ca. Although Reinsel et al. (1987) refer to ca as a global trend in ozone,

this is an assumption and is not implied by the random effects model. A more precise definition
of ca is that it represents the component of trend in total ozone that is common to all the stations

used in the analysis.

An alternative to the time domain approach of Reinsel and Tiao can be found in Bloomfield et

al. (1983). Rather than using a random effects model to combine estimated trends, a similar

model is used to construct an average ozone series. The parameter ca is then estimated from the
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Fourier transform of this single series. This frequency domain analysis has the advantage that
less need be assumed about the structure of the short- and long-term variation in ozone. One

Table 1. Dobson Network Used in Total Ozone Trend Analysis

Region Station Location Data Period

North America Resolute, Canada 75°N, 95°W Jan. 1958-Dec. 1984

Churchill, Canada 59°N, 94°W Jan. 1965-Dec. 1984

Edmonton, Canada* 54°N, 114°W April 1958-Dec. 1984
Goose, Canada 53°N, 60°W Jan. 1962-Dec. 1984

Caribou, USA 47°N, 68°W Jan. 1963-Dec. 1984

Bismarck, USA 47°N, 101°W Jan. 1963-Dec. 1984

Toronto, Canada 44°N, 79°W Jan. 1960-Dec. 1984

Boulder, USA 40°N, 105°W Jan. 1964-Dec. 1984

Nashville, USA 36°N, 87°W March 1963-Dec. 1984

Europe Aarhus, Denmark 56°N,

Lerwick, United Kingdom 60°N,

Bracknell, United Kingdom 51°N,
Potsdam, GDR 52°N

Belsk, Poland 52°N

Hradec Kralove, Czechoslovakia 50°N

Hohenpeissenberg, FRG 48°N
Arosa, Switzerland* 47°N

Mont Louis, France 42°N

Vigna di Valle, Italy 42°N
Cagliari/Elmas, Italy 39°N,

Lisbon, Portugal 39°N,

10°E Jan. 1958-Dec. 1984

I°W Jan. 1969-Dec. 1984

I°W Jan. 1969-Dec. 1984

13°E Jan. 1964-Dec. 1984

21°E April 1963-Dec. 1984

16°E Aug. 1961-Dec. 1984
ll°E Jan. 1968-Dec. 1984

10°E Jan. 1958--Dec. 1984
2°E March 1962-Dec. 1979

12°E Jan. 1958-Dec. 1984

9°E Jan. 1958-June 1984
9°W Oct. 1967-Dec. 1984

India Srinagar, India 34°N,
Quetta, Pakistan 30°N,

New Delhi, India 29°N,
Varanasi, India 25°N,

Mount Abu, India 25°N,

Kodaikanal, India* 10°N,

74°E Feb. 1964-Nov. 1984

67°E Jan. 1964-Dec. 1984

77°E Jan. 1960-Dec. 1984

83°E Jan. 1964-Dec. 1984
73°E Nov. 1969-Feb. 1982

77°E Jan. 1961-Dec. 1983

Japan Sapporo 43°N,
Tateno* 36°N,

Kagoshima 32°N,

141°E Feb. 1958-Dec. 1984

140°E Jan. 1958-Dec. 1984

131°E Jan. 1960-Dec. 1984

Australia Brisbane 27°S,

Perth 32°S,

Aspendale* 38°S,

Macquarie Island* 54°S,

153°E Jan. 1958-April 1983

116°E March 1969-April 1983
145°E Jan. 1958-Dec. 1982

159°E April 1963-Aug. 1981

South America Huancayo, Peru* 12°S, 75°W March 1964-Dec. 1984

Buenos Aires, Argentina* 35°S, 58°W Oct. 1965-Dec. 1984

Pacific Mauna Loa, Hawaii* 20°N, 156°W Jan. 1964-Dec. 1984

*Nine-station network used by Hill et al. (1977).
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disadvantage of this model, however, is that stations within a particular region are constrained

to having the same spectrum. This assumption is also made among the regional effects.

Although this analysis yielded a trend estimate that differed slightly from that of Reinsel and his
coworkers, most of the discrepancy can be explained by different sensitivities to extreme ozone

values and to the solar variable, by different lengths of data records, and by different methods for
modeling the seasonal variance (Hill et al., 1986).

Recent results reported in Chapter 4 suggest that the trend in ozone may depend on the

season. For Arosa and several other northern stations, the percent losses in total ozone tended to

be greater in the winter. Thus, the estimated trend may be more sensitive to the statistical

treatment of the seasonal component than would otherwise have been expected. Another

implication of these results is that the sensitivity of the trend estimates may be improved by

concentrating on the months in which a larger trend is expected. Because monthly ozone values
are autocorrelated, the estimated trends for each month will also be correlated. This feature

makes it difficult to interpret the 12 individual trend estimates. However, these estimated

monthly trends can be averaged to yield an estimate of the annual trend; a standard error for this

estimate can be computed using the dispersion matrix of the individual estimates. Some of the

statistical issues of coping with the seasonality in ozone are discussed in Section 3.

1.2 Ground-Based Ozone Profiles (Umkehr)

Statistical analysis of the Umkehr data supplied by some stations in the Dobson network is
motivated by the suggestion that the main depletion of ozone due to the release of chloro-

fluoromethanes (CFM's) will occur at altitudes between 35 to 40 km (Umkehr layers 7 and 8).

Trend analysis that concentrates on this segment of the stratosphere may be more sensitive in
detecting a depletion due to CFM's than an analysis based on total column ozone. In fact, Reinsel

et al. (1987) report a statistically significant negative trend in layers 7 and 8. However, these

results need to be qualified in two ways. First, the average trend estimate for a particular layer

cannot be interpreted as a global trend, but rather refers to the average ozone in the layer above
the Dobson stations taking Umkehr data. Also, Umkehr measurements are sensitive to strato-

spheric aerosols (see Chapters 3 and 5 of this report). Although ReinseI's method attempts to

adjust for aerosols, all the bias caused by the presence of aerosols may not be removed.

The statistical methods applied to the Dobson profile data are similar to the analysis of the

total column measurements; therefore, only some specific remarks will be made. To account for
the dependence of the Umkehr measurements on aerosols, an additional variable was included

in the model (1). This is the atmospheric transmission of solar radiation measured at Mauna Loa,

Hawaii. Although these transmission data are specific to the integrated amount of aerosols in the

stratosphere over Mauna Loa, it is assumed in Reinsel et al. (1987) that a smoothed and possibly

lagged version of this series may be appropriate at other locations. One weakness in this analysis
is that the choices for smoothing and lagging the transmission series were not based on a specific
statistical model. Nevertheless, the estimated effects due to aerosols on the different ozone

layers are in agreement with theoretical predictions. Available aerosol data are discussed in

Chapter 10. Reinsel and his coworkers are currently exploring the use of lidar measurements to
improve aerosol corrections.

An earlier analysis of Umkehr data by Bloomfield et al. (1982) came to different conclusions

from those of Reinsel et al. (1987). Specifically, the earlier analysis detected no significant
negative trends. However, the earlier analysis included no attempt to correct for aerosol effects,

r
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and was based on older data. Since the statistical methods used were similar to those of Reinsel et

al. (1987) in other respects, it is to be expected that an updated analysis would give results largely

in agreement with those of the later analysis.

1.3 Satellite Data

The Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus-7 provides the most

recent and the longest record of ozone measurements from a satellite (see Chapter 5). These data

can be used in two different ways to improve trend detection. In contrast to the Dobson network,

the Nimbus-7 ozone data provide nearly global coverage. Thus it is fairly simple to construct

zonal or global series as aggregations of the raw data. Another use of the satellite data is to assess

the global representativeness of the Dobson instrument network. Both of these topics are

considered in Reinsel et al. (I988). This work gives an estimate of - 0.35 + 0.28 percent per year
for the global trend in total ozone for November 1978 to September 1985, after adjusting for a drift

in the SBUV instrument and accounting for solar activity 3. Comparing the satellite measure-

ments at the locations of the Dobson stations with the full record of measurements suggests that

the average trend estimated for this network will be similar to a global trend.

This work uses the same model as that given in (1). The time scale is monthly means, and Yt

should be interpreted as some aggregation of the raw data either over blocks (10 degrees of

latitude by 20 degrees of longitude), over zones (bands of 10 degrees latitude), or over the entire

surface covered by the satellite (70°S latitude to 70°N latitude). In each of these cases, just as in the
Dobson measurements, successive ozone values tend to be correlated. This autocorrelation must

be taken into account to derive reliable uncertainty levels for estimated trends. One notable

feature of this data set is its short length (7 years) relative to the Dobson data. Since this time

series does not even span one solar cycle, the adjustment of the ozone series using a covariate for

solar activity (such as 10.7 solar flux) is important. Reinsel et al. (1988) have included such a solar

term in their analysis.

Trend analysis using the SBUV data alone is difficult because of an instrument drift (dis-

cussed in Chapter 2). Reinsel et al. (1988) estimate a linear drift to be - 0.39 + 0.11 percent per
year using the Dobson network 4. If the satellite data are adjusted by this estimated drift, then the

standard error of the estimated trend must also reflect the uncertainty of the drift estimate.

Reinsel et al. (1988) include the contribution of the drift uncertainty in the trend standard error,

but their method is not entirely satisfactory.

The representativeness of the Dobson network was evaluated by taking a weighted average

of all blocks containing the 36 stations used in Reinsel et al. (1988). When this series was
subtracted from the global series, no significant trend was found in these differences ( - .06 + . 12

percent per year). Although these results suggest that a trend in the Dobson network may be

similar to a global trend, there are some problems with this comparison. The blocks are not point

measurements of total column ozone but are themselves averages over a substantial amount of

surface area. This may cause closer agreement with the global series than might otherwise occur

if one used the measurements taken at specific locations. Also, in the actual Dobson analysis,

3 This trend estimate has been updated to -0.28 + 0.22 percent per year for the period November 1978 through
December 1986 (Reinsel, 1988, personal communication).

4 This drift estimate has been updated to -.40 ---0.11 percent per year for the period November 1978 through
December 1986 (Reinsel, 1988, personal communication).
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individual trends are estimated for each station and then combined. This differs from first

forming an average series from the blocks and then estimating the average trend from this single
series.

2.0 TEMPORAL AND SPATIAL CORRELATION

An important contribution of statistical methods to problems such as estimation of trends in

ozone data is attaching an appropriate measure of uncertainty to any trend estimate. In this

section we shall review the calculation of such measures and discuss their validity.

2.1 Least-Squares Estimates

The calculation of the least-squares slope of a set of data is the most familiar example of trend

estimation. Suppose that the data are Yl, Y2 ..... Yn. Then the least-squares estimate of slope is

where

E (t--t)(yt-- y)

¢_o_ t = l

E (t--D2

t=l

Y= (n + 1)/2 and y = (l/n)

The full equation of the fitted line is

(2)

E Yr.

t=t

y = y + d_(t --i).

The residuals are the vertical distances from the data points (t,yt) to the line, and are given by

rt = Yt - ..f't = Yt - {Y + & (t - -[) }.

The residual sum of squares is just
n

E r_,
t=l

and the residual mean square is this divided by the degrees of freedom (n- 2),

s 2-_ 1-2. E rt2.
n-

t=l

The standard error of the slope estimate O3(as it is usually calculated) is

S

SE(dO = ' (3)

(t_ y)2
t=l

and it is common for the estimated slope to be reported as "(5 _ SE(go)" or, for reasons
described in the next section, as "o3 +- 2 SE(go)". But what meaning can be attached to such a

report?

r

"2_

=
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2.2 Interpretation of Standard Error

We can give a firm interpretation to a standard error such asSE(6) only by reference to some

model for the randomness in the data. The simplest such model is

Yt= _+ to(t- O+ et, (4)

where {ex,E2,. • .,en} are random errors, independently drawn from a Gaussian distribution with

mean value 0 and variance 0.2. The constants/z, w, and o" are the (statistical) parameters of the
model, and y, &, and s are estimates of these parameters. The implication of such a model is that

the observed set of data {Yl,y2 .... _Yn}is only one out of an infinitely large set of possible data
sequences, each with different values of the E's. The observed data are a sample (of size 1) from the

population of possible sequences.

Since each

distribution for 6, called its sampling distribution. The variance of this distribution is

0- 2
var(_) --

n

possible sequence gives rise to a different value of 6, the model implies a

(t-t) 2

(5)

t=l

and, consequently, the standard error calculated in (3) can be regarded as an estimate of the
square root of this variance.

It follows that for an appropriate constant .95t n 2,the range of values

+ t.95_2SE(&)

has a 95 percent chance of containing the "true" slope value, 02, or, in a certain sense,

.95 8E(&)} = .95Pr{& - t25_2SE(&) <_ w <_ & + t.-2 (6)

Since the tabulated values fort95 2 are all at least 1.96, and for n > 60 are at most 2, the interval

is often approximated by

_o +_ 2SE (_ ) .

Thus, "20-" limits can be interpreted as giving an approximate 95 percent confidence interval.

2.3 Limitations of the Model

Evidently the credibility of the standard error (3) depends on the credibility of the model (4),
in light of the data. It is often clear by cursory inspection that the Gaussian distribution is not a

good model for the distribution of the errors et. The Gaussian distribution is symmetric about its

center and has relatively short tails, behavioral aspects that are often not shared by real data.
However, it is known that the confidence interval statement (6) is not drastically affected by such

deviations from the model (the effects of such deviations in the simpler case of estimating a mean
are discussed by Benjamini, 1983).

A more serious problem is that the model (4) states that the data are independent of each other,

and hence uncorrelated. In many sets of real data, however, especially those collected sequentially
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in time (time series data), cursory inspection reveals serial (or temporal) correlation in the data.

Unfortunately, the effect of correlations among the data, including serial correlation, is generally
to invalidate any confidence interpretation of the conventional standard error formula (3).

How is correlation visible? Positive correlation among consecutive observations means that a

value higher than expected (that is, one with a positive error e) is likely to be followed by another

observation with a positive e. Such persistence of deviations above or below what is expected is

characteristic of many real series, including ozone data and most of the related meteorological

data. Figure 1 shows annual mean ozone levels at Arosa, Switzerland, 1933 to 1982, from Birrer

(1975) and Dfitsch (1984b). Also shown is the (least-squares) regression line for the data, with

equation

y = 336.4- 0.1648 (year- 1957.5).

The occurrence of several values in a row above or below the regression line is evidence of

positive serial correlation, though it is less strong in this series than in many. Figure 2 shows the

same data with least-squares lines fitted through data for several successive 10-year periods. This

is essentially the same as the analysis of Bishop and Hill (1982). The coefficients of the lines are

given in Table 2. The average of the nine SE's is 0.819, whereas the standard deviation of the
calculated trends is 1.199. Thus the calculated trends show 46 percent more variation than their

standard errors suggest they should. For series with stronger correlation between consecutive

values, such as monthly station data and regional or global average series, the actual variability

can exceed the estimated standard error by much more than in this case.

Where does this leave us? The standard formula (3) is, in general, meaningful only in the

context of the model (4), but this model is untenable for most of the data we need to analyze for

trend. Evidently we need a more tenable model, and a new formula for standard error that has

the desired confidence interpretation (6) in the context of that model.

We shall see that other models may suggest other formulas for slope estimates, as well as for
their standard errors. In general, these other slope estimates differ little from the ordinary

least-squares estimates (2), and, in fact, (2) is asymptotically efficient in the presence of

stationary autocorrelated noise (Grenander, 1954). Thus, the problem lies mainly in obtaining

valid standard errors, not in calculating the slope estimate itself.

Table 2. Coefficients of least-squares lines

Start year End year Centercept" Slope SE (slope) =-

1933 1942 340.633 1.526 1.276

1938 1947 338.458 -0.678 1.397

1943 1952 335.892 1.753 0.676

1948 1957 337.450 0.224 0.799
1953 1962 339.600 0.490 0.747

1958 1967 337.976 - 1.915 0.754

1963 1972 335.576 0.643 0.727

1968 1977 334.392 - 1.166 0.578

1973 1982 330.375 0.044 0.440

K=

The centercept of the line is its height at the midpoint of the
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Figure 1 : Annual mean ozone levels at Arosa, Switzerland, 1983-1982. (Unweighted averages of monthly
means, with missing months replaced by least-squares estimates.)
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Figure 2: Arosa data with least-squares fitted lines.
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2.4 An Elementary Model for Temporal Correlation

Models for serially correlated data have been discussed extensively in the statistical literature

(see, for example, Box and Jenkins, 1976). One of the simplest is the (first-order) autoregressive
model

7Jt = ¢7]t-1 "}- Et" I¢[ < 1, (7)

where the e's are, as in (4), independent from mean 0 and variance o-2. If we introduce the

backshift operator B, defined by

B_h = 7_t-1,

and more generally

Bhrh = Tit-h, --_c ,_ h < _¢,

the model (7) may be written

_?t = CB_t + et

whence

and

(1 - d2B)_?t = et

_7,= (1 - _bB)-le,.

For this model, the serial covariances (or autocovariances) are

o-2_b!h[

'Yh = eOV (7_t,T_t_h) -- 1 - _)2 , _c'<h<_°

and the serial correlations are

Ph = corr (_ttTJt_h) = (_)lh[, --_x: < h <o_. (8)

Since ¢ can be arbitrarily close to 1, this model can display correlations that are also close to 1,
and that die away very slowly as the time separation h increases.

Now suppose that we wish to estimate a trend in the presence of correlated errors with the

structure (7). That is, suppose that we wish to estimate w in the equation

Yt = tx + w (t --7) + _t,

where {rh } satisfies (7). If we know the value of 4), the simplest solution is to construct a new set of
data

B

r
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Y* = Yt - dPYt-1

= {1_ + w(t --D + rh} - d){t x + w(t - 1 --/) + rh_:}

= (1 - 6)(# + w12) + oJ(1 - _b)(t -7- 112) + r/t - _br/,-1

= (1 - ¢)(tz + _o/2) + (o(1 - ¢)(t -7- 1/2) + et,

for t = 2 ..... n. If we write

x*= (1- ¢)(t-7- 1/2)

and

tL* = (1 - _b)tz + (1 - _b)w12,

then the modified data satisfy

y* = tz* + _x* + et,

which is in the same form as the original equation (4), with errors e_that are now uncorrelated. It is

therefore legitimate to estimate oJby least-squares, and to report its standard error as in equation

(3). The resulting estimate is
n

E x*(y* - -y*)

d)ar I = t = 2
n

t=2

with standard error

where

SE(&._I) =
Sarl

t=2

rl

2 1 "E y, . ,)2
"-qarl- n-3 '(Y*- -- OdarlX' "

t=2

It may be shown that if n is large and 14)]is not close to 1, the new slope estimate &ar_ is very
close to the estimate & of equation (2). However, the new standard error may be quite different

from the earlier version, and is typically larger. In fact, we can show that if n is large and ]¢[ is not

close to 1, then the (valid) standard error of &at1 is larger than the (invalid) standard error of the

least-squares estimate & by the factor

V'(1 + ¢)/(1 - ¢).

For the Arosa annual average data, the estimated value of _bis around 0.25, which would

make this factor approximately 1.29. Since we observed 46 percent more variation among the
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slopes than was suggested by the least-squares standard error, rather than 29 percent, there is
even more variability among the calculated trends than is predicted by the model (7).

Reinsel et al. (1987) found the month-to-month correlation for SBUV total ozone column data

averaged from 70°S to 70°N to be around 0.84, which would make this factor 3.39. Thus, for

ozone data averaged over a large region, in this case most of the globe, the effect of ignoring serial
correlation can be a reported standard error of less than a third of its true value. Reinsel et al.

(1988) give several illustrations of the difference between the valid and invalid standard errors.

In practice, of course, we will not know the value of 4_,but it may be estimated from residuals

and, provided the series length is adequate, used essentially as if it were known. An iterative

procedure in which ¢ and o) are updated alternately was suggested by Cochrane and Orcutt

(1949), and has been shown to yield maximum conditional likelihood estimates (Sargan, 1964).
The procedure is discussed by Shumway (1988, Section 3.5).

2.5 More General Temporal Models

Equation (7) is often not the appropriate model for a given set of data; in practice, serial
correlations may not show the simple exponential decay of equation (8). However, it is the

simplest of a family of models (the ARMA family) that can be used in this way to model serial

correlation and to provide valid standard errors for parameter estimates. The ARMA model of
order (p,q) has the form

P q

r 1 s=0

In terms of the backshift operator, this may be written

O(B)

rh - ¢(B)et

where the polynomials ¢(z) and 0(z) are defined by
P q

: - £ ---y, Osz'L
r=l s=O

The constraint ]4,l < 1 in the first-order model is generalized to the requirements

4,(z) 4= Oforlz[_< 1, O(z) ¢ Oforlzl < 1.

For this model, the autocorrelations

Ph = eorr(rh, rh h)

cannot be written down explicitly, but satisfy the difference equation
p

Ph = £ CrPh-. h > q.
r=l

They therefore still decay to zero at an exponential rate as h--> _c, but not as a simple

exponential sequence.
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As in the case of the AR(1) model (7), the slope of a trend line should be estimated not by

ordinary least-squares, but by some method that takes the covariance structure of the data into
account. Various methods are available, and some are implemented in the more complete

statistical packages. It is again true that the slope estimate itself is generally close to the one

obtained by ordinary least-squares, but its standard error may be very different when calculated

appropriately. The approximate ratio of the correct standard error to the incorrect one can again
be calculated, but it is more easily expressed in terms of the power spectrum of the model than its
autocovariances.

The power spectrum of a stationary time series is the function whose Fourier coefficients are
the autocovariances

oo

s(f) = E _" .-2_rhrh_ ,0_(f< 1,
h _ -_

from which it follows that
-=

1

Yh = fo e2_ifh s(f)df, -_ < h < _.

The power spectrum of the ARMA(p, q) model (9) is

o.2 iO(e2
SARMA(f) = l¢(e 2 _/f)12"

Grenander (1954) showed that the variance of the sampling distribution of a trend estimated

from a stretch of data of length n is, for large n, approximately

s(O)
var(&) = _ , (10)

(t--f)
t=l

Comparison with equation (5) shows that the factor o2 in the numerator has been replaced by
s(0), the power spectrum evaluated at zero frequency. Equation (10) can be used as the basis for

computing the approximate standard error of the trend estimate, or merely to get an indication of
how much the standard error differs from the result given by the formula (3), the ratio being just

/ f:s(f)df .

2.6 Spatial Correlation

In the previous sections we discussed the complications that arise when we analyze data
collected over time, with correlation among observations that are close together in time (serial

correlation, or temporal correlation). Measurements made close together in space also tend to be
correlated, and when such measurements are analyzed jointly, their spatial correlation also

needs to be taken into account.

One general approach to analysis of spatiotemporal data is based on models generalized from

the strictly temporal models described above. However, this approach requires the data to be
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collected on a regular grid of locations, and to show some homogeneity in their correlation
structure. One or both of these features is absent in most of the data that have been collected in

studies of ozone and other atmospheric trends. However, more ad hoc solutions can be found for

certain problems.

One such problem is the need to combine quantities calculated from data collected at different
locations. Suppose that _ and 02are estimates of similar quantities at two locations. Each _might

be a trend estimate, or an average ozone level over a decade, or a change in such an average from

one decade to the next. The standard error of the average

is given by

where

= (0, + 02)/2

SE ( 0.) = V"_rvar (0.)

var(O) -- (1/4) {var(01) + var(t)2) + 2cov((_1,02)}.

The two variance terms can usually be obtained from the analysis of the data for locations 1

and 2 separately, but the covariance term depends on the joint behavior of the two sets of data,
and therefore can be calculated only from a joint analysis. While this is not a difficult analysis to

carry out, it is not one that the commonly available statistical packages are set up to handle.
Reinsel and Tiao (1987) describe a method that amounts to doing just this, in their analysis of an

entire Dobson network, but the method is not easy to implement with standard software. As a

result, it is more convenient to calculate summary statistics for a number of locations in a slightly

different way.

Consider, for instance, the problem of calculating an average trend for all Dobson stations in a

certain latitude band. Since it is straightforward to calculate a trend for each station, it might

seem that the way to proceed is to simply combine the individual trends. However, to compute

the standard error for this average we would need to know all the covariances among the

individual station trends. We can, instead, form an average ozone time series for the band, then

estimate the trend in this single series. The standard error of the resulting estimate may then be

obtained in the usual way. The estimated trend in the average series is, in general, close to the

average of the individual trends, and may actually be a more appropriate quantity to consider.

The weakness of this approach is that the analysis of the average series can account only for

the statistical fluctuations that are visible in the average. Thus, phenomena that induce spurious

trends in the individual station records, for example instrument drift, pass undetected, while in

Reinsel and Tiao's approach they show up as variations among the individual trend estimates.
As a result, the standard error obtained from analysis of an average series may need to be inflated

to allow for such phenomena, while the standard error calculated from Reinsel and Tiao's

method automatically allows for them. Neither approach can handle spurious trends common to
all stations, so in either case some allowance must be made for these.

3.0 SEASONALITY IN OZONE DATA

In this section we review various ways in which ozone data show seasonal behavior, the

problems such behavior raises, and some of the solutions used.
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3.1 Seasonal Structure in the Mean

Seasonal structure is one aspect of many time series that needs to be considered when

estimating a trend. It is usually easy to separate seasonal behavior from trend, so the issue is not

one of confusion between the two so much as estimating the size of the random errors in the
data.

There are two basic strategies for coping with seasonality in the mean. One is to use seasonal

adjustment to remove the seasonal behavior, and then to estimate trend from the seasonally
adjusted data. The second is to fit a model that includes both seasonal structure and a trend term,

so that both parts are estimated simultaneously. The former is preferred in exploratory analysis

as it allows more flexibility in estimating the trend. For instance, a graph of the adjusted data will

often suggest what kind of trend is actually present, and will typically provide a preliminary

estimate of its magnitude. By contrast, simultaneous estimation is preferable when a model has

been chosen and its parameters are being estimated. One advantage of simultaneous estimation

is that it usually provides standard errors for all estimated parameters, as well as their
correlations.

In either case, it is necessary to specify the seasonal structure to be removed or incorporated

into the model, respectively. The simplest approach is to allow an arbitrary mean for each
month s. If we write the data as

Yt = St + zt,

where St and zt represent the seasonal and nonseasonal parts of the data, respectively, then this

amounts to putting

St = Ixi if data month t falls in calendar month i, i = 1,2 .... 12.

Here, IX1is the mean of January data, Ix2 is the mean of February data, and so on.

This approach has the merits of simplicity and ease of interpretation, but in short series it may

be undesirable to use as many as 12 parameters to describe seasonal structure. An alternative

approach is to use a sine-cosine expansion. In this case, we put

d

St = tx + _ {Ajeos(2_t/12) + Bjsin(2 _t/12) }
j=l

where J <_ 5, using 2J + 1 parameters. Often J = 1 or J = 2 is sufficient, corresponding to

fitting an annual wave with three parameters, or annual and semiannual waves requiring five

parameters, respectively. If we set J = 6 with the constraint B6 = 0, there are again 12 para-

meters; this is effectively the same as allowing an arbitrary set of monthly means.

Figure 3 shows the results of these two approaches for the monthly Arosa data. The asterisks

indicate the monthly means; the curve is constructed from a sine-cosine expansion withJ = 2

(estimated by ordinary least-squares). This two-frequency model fits most of the monthly means

5 For ease of exposition we deal only with the case of monthly data. The modifications necessary for other types of
seasonal behavior are clear.
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Figure 3: Seasonal structure of monthly Arosa data.

well in the graph, but the lack of fit in March and April could be critical in a trend study (see

Section 3.2 below).

3.2 Seasonal Structure In the Trend

The issue of seasonal structure in the mean of a series discussed in the previous section may

also extend to estimating a trend, if theory or observation suggests that the trend may vary from
season to season.

Suppose, for instance, that trend is being measured by a ramp function such as

A if t < tor t = A + ¢o (t -- to) if t _> to

= A + co (t- to)+,

where (t - to)+ is defined by

f

(t- to)+ =_ 0 ift < to

[ (t- to) ift >to.

The function rt has the constant level A up to month to, and increases with slope w units per

month after month to. As in the previous section, we have various ways of allowing the

magnitude of the trend to vary from month to month. The simplest is to replace the single A by 12

A's and the single co by 12 co's:

rt = Ai +coi (t- to)+ if data month t falls in calendar month i.
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Seasonal trend estimates of this form are reported in Chapter 4.

Again, however, we might not want to allow completely arbitrary variation in the trends from

one month to the next. One alternative would be to use sine-cosine expansions as before:

J

rt = )to + E,{Ajcos(2_jt/12) + Bjsin(2_t/12)}

j=l j

+ [ °_° + E{Cjc°s(2_rjt/12)+ Djsin(2_'jt/12)}](t- to)+.
j=l

Notice that we have used the same number of terms in each expansion. Statistical con-

siderations such as lack of significance of some coefficients might suggest dropping terms from

one sum but not the other, but care would have to be used. Omission of significant terms from

one sum would introduce bias into estimates of coefficients in the other, and possibly into other

coefficients in the same sum. In particular, bias could arise if a sine-cosine expansion were used

for, say, the level term, and arbitrary constants were used for the trend, since using arbitrary

constants is effectively the same as taking J = 6 (and omitting the final sine term).

3.3 Seasonal Structure in the Correlations

In Section 2 we have discussed the use of time-series models to represent the correlation

among measurements such as ozone columns at different times at the same location (or

geographical region). One way in which those models are not sufficiently general is that they

have stationary covariance structure:

COV(Yt,Yt- h) ---- a function only of h.

However, most ozone time series have covariances that depend on the season as well as the

time separation h. This is most easily seen in the monthly dependence of the standard deviation.

As was mentioned in Section 1.1, failure to allow for such seasonality in covariance structure

distorts any analysis by placing equal weight on the more variable winter data and the less
variable summer data.

Two approaches have emerged for coping with this problem. Reinsel and his coworkers have
developed and exploited a method that can be described as seasonally weighted least-squares,

while the values reported in Chapter 4 were obtained essentially by standardization of the data

before fitting the trend model. The two approaches may be compared in terms of a cor-

responding model for the noise term rh. In each case, the analysis may be interpreted as using a

modified ARMA model (cf. equation 9). Reinsel's approach corresponds to the model

O(B)

_lt-- ¢(B) (atet ),

while the approach used in this report corresponds to

O(B)

_t = O't _¢:t.

In each case, the scale factors o-t are periodic, and reflect the seasonal dependence of the

standard deviation of the noise rh and of the innovations et, respectively. Both general models

appear plausible, but studies of which fits ozone data better have not been performed in depth.
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4.0 Summary

Ready, widespread acceptance of the results of a scientific investigation depends critically on

the credibility of the study, and, in the case of a data-oriented study, this in turn depends largely

on two factors: the quality of the data on which the study is based and the quality of the

subsequent analysis of those data. Data quality for each of the measuring systems is discussed in
the relevant chapters; here we offer only broad comments. The primary focus of this appendix is

on data analysis techniques, about which we offer more specific suggestions.

Trend estimates--There are many ways to qualify the trend in a set of data, including fitting

a straight line, fitting a ramp (or hockey stick) function, or comparing averages over

different time windows. In each case, the resulting quantity should be accompanied by an

appropriate standard error.

Standard errors--A standard error has meaning only in the context of being a model for the

way in which the data were sampled. If the data show evidence of spatial or temporal
correlation, the sampling model must reflect this. Computer software for building the

required sampling models and calculating the corresponding trend estimates and stand-

ard errors is widely available and should be used more extensively.

Current results--Trend estimates based on fitting ramp functions reported in Chapter 4,
and those of Reinsel, Tiao, and their coworkers, adequately account for serial correlation

and its seasonal structure, and represent state-of-the-art estimates. Estimates of trends

from Total Ozone Mapping Spectrometer (TOMS) data, also reported in Chapter 4, allow

for serial correlation, but not for its seasonal structure. Although not state of the art, the

results should be close. Standard errors of other trend estimates obtained by least-squares

fitting without allowance for serial correlation may be incorrect by factors of more than
three.

Ground-based total ozone column data--It has been demonstrated that the quality of Dobson

total ozone column data can be improved substantially by retroactive application of

corrections based on calibration changes. This is best carried out by complete re-

calculation of each day's data on the basis of corrected algorithms, but useful improve-

ments can be made by correcting monthly averages. Stations should be urged to give a

higher priority to such adjustments to historical data, and to ensuring publication of the

adjusted data by the World Ozone Center.

Ground-based ozone profile data--The largest remaining question about the quality of the
ozone profile data obtained by the Umkehr technique is the impact of aerosols. This

question will have to be resolved before the Umkehr network can fulfill its dual roles of

providing ground-based information about trends in ozone profiles and of providing

ground truth for the validation of satelliteborne instruments.

Satellite ozone measurements--The realization that the effect of diffuser plate degradation

on Nimbus-7 cannot be uniquely separated from other instrument changes underscores
the difficulty of maintaining measurement stability with satellite-based systems. This

illustrates the continuing need for cross-checking all types of measurements, a need about

which there has been a tendency to become complacent.
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Appendix F

Major Acronyms

AER, Inc.
AERE
AFCRL
AFGL
AGU
AIAA
NOAA/AL
ARC
ATMOS
AVHRR

BOIC
BUV

CFC
CFM
CIMO
CIRA
CMA
CMRN
CNRS
COSPAR
CPOZ
CSIRO

DCA
DU

ECC
EGA
EMR
ENSO

EOS
ERBS
ERL

FGGE
FOV
FRG

GARP
GDR
GFDL
GHRS

Atmospheric and Environmental Research, Incorporated
Atomic Energy Research Establishment (UK)
Air Force Cambridge Research Laboratories
Air Force Geophysical Laboratory
American Geophysical Union
American Institute of Aeronautics and Astronautics, Inc.

Aeronomy Laboratory
Ames Research Center (NASA)

Atmospheric Trace Molecule Spectroscopy Experiment
Advanced Very High Resolution Radiometer

Balloon Ozone Intercomparison Campaign
Backscatter Ultraviolet Spectrometer

Chlorofluorocarbon

Chlorofluoromethane
Commission on Instrument and Method of Observation

COSPAR International Reference Atmosphere
Chemical Manufacturers Association

Cooperative Meteorological Rocketsonde Network
Centre National de la Recherche Scientifique (France)

Committee on Space Research

Compressed Profile Ozone
Commonwealth Scientific and Industrial Research Organization

Detector capsule assembly
Dobson Unit

Electrochemical cell (ozonesonde)
Emissivity growth approximation
Electromagnetic radiation
E1 Nifio-Southern Oscillation

Earth Observing System
Earth Radiation Budget Satellite
Environmental Research Laboratory (NOAA)

First GARP Global Experiment
Field of view

Federal Republic of Germany

Global Atmospheric Research Program
German Democratic Republic

Geophysical Fluid Dynamics Laboratory
Goddard High Resolution Spectrograph
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ACRONYMS

GMCC
GMT
GSFC
HIRS
hPa

IAGA/IAMAP

ICSU
IFC
IFOV
IGY
INPE
IOC
IPV
IR

JPL

LAMAT
LaRC
LASP
LIMS
LLNL
LRIR
LTE

MAP
MSU

NASA
NBS
NCAR
NDSC
NESDIS
NIR
NMC
NMHC
NOAA
NOZE
NRC
NRL
NSSDC

ODW
OGO
OPT

PMR
PMT
PSC

QBO
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Geophysical Monitoring for Global Change (NOAA)
Greenwich Mean Time

Goddard Space Flight Center (NASA)
High Resolution Infrared Radiation Sounder
hectoPascals

International Association for Geomagnetism and Aeronomy/International
Association for Meteorology and Atmospheric Physics
International Council of Scientific Unions

Inflight calibrator
Instrument field of view

International Geophysical Year
Brazilian space agency
International Ozone Commission

Isentropic potential vorticity
Infrared

Jet Propulsion Laboratory

LIMS Map Archival Tapes
Langley Research Center (NASA)

Laboratory for Atmospheric and Space Physics (University of Colorado)
Limb Infrared Monitor of the Stratosphere

Lawrence Livermore National Laboratory
Limb Radiance Inversion Radiometer

Local Thermodynamic Equilibrium

Middle Atmosphere Program
Microwave Sounding Unit

National Aeronautics and Space Administration
National Bureau of Standards (now NIST)
National Center for Atmospheric Research
Network for the Detection of Stratospheric Change
National Environmental Satellite Data and Information Sen, ice
Near infrared

National Meteorological Center
Nonmethane hydrocarbons
National Oceanic and Atmospheric Administration
National Ozone Expedition
National Research Council

Naval Research Laboratory
National Space Science Data Center

Ozone Data for the World

Orbiting Geophysical Observatory
Ozone Processing Team

Pressure Modulated Radiometer

Photomultiplier tube
Polar Stratospheric Cloud

Quasi-Biennial Oscillation

L

m



ACRONYMS

RAOB
ROCOZ

SAGE
SAM-II
SAMS
SAO
SBUV
SCOSTEP
SCR
SIRIS
SME
SMM
SPIE
SSU

THIR
TIROS
TOMS
TOVS

UARS
UKMO
UNEP
UVS
UVSP

VTPR

WMO
WODC

Rawinsonde Observation
Rocket Ozonesonde

Stratospheric Aerosol and Gas Experiment
Stratospheric Aerosol Measurement
Stratospheric and Mesospheric Sounder
Smithsonian Astrophysical Observatory (Cambridge, MA)
Solar Backscatter Ultraviolet Spectrometer
Scientific Committee on Solar Terrestrial Physics
Selective Chopper Radiometer
Stratospheric InfraRed Interferometer Spectrometer
Solar Mesosphere Explorer
Solar Maximum Mission

International Society for Optical Engineering
Stratospheric Sounding Unit

Temperature Humidity Infrared Radiometer
Television and Infrared Observation Satellite

Total Ozone Mapping Spectrometer
TIROS Operational Vertical Sounder

Upper Atmosphere Research Satellite
United Kingdom Meteorological Office
United Nations Environment Program
Ultraviolet Spectrometer
Ultraviolet Spectrometer and Polarimeter

Vertical Temperature Profile Radiometer

World Meteorological Organization
World Ozone Data Center
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Appendix G

Chemical Formulae and Nomenclature

Symbol

o

02

O3

O×

N2

N:O
NO

NO2

NO_

NOy

NOx

N205

HNO> HONO

HNO3, HONO2

HNO4, HO2NO._
NH3

H20

H202

OH, HO

HO2

HOx

CO

CO2
CS2

COS, OCS

SO2

SF6

H2SO4

HF
HC1

HCN

HOCI

C]

C10

C1ONO> C1NO3

CI×

CH4

C2H6

C3H8

C2H4

C2H2

Name Symbol

Atomic oxygen CH20

Molecular oxygen CHBCHO
Ozone (CH3)2CO

Odd oxygen (O, O(1D), O3) CHgOxH

Molecular nitrogen CH2CHCHO
Nitrous oxide C2CI4

Nitric oxide CH3C]

Nitrogen dioxide CH2C12
Nitrogen trioxide, nitrate CHCI3
radical CFC

Odd nitrogen (NO, NOe, NO> HC
N205, CIONO2, HNOa, NMHC

HNO3) PAN

Oxides of nitrogen (NO, NO2, CHBCC13
NO3) C2F_,

Dinitrogen pentoxide CC14
Nitrous acid CCI3F
Nitric acid

Peroxynitric acid CC12F2
Ammonia

Water vapor CCIF 3

Hydrogen peroxide

Hydroxyl radical CF 4

Hydroperoxyl radical CHC12F

Odd hydrogen (OH, HO2, CHCIF:
H202)

Carbon monoxide CCI2FCCIF2
Carbon dioxide

Carbon disulfide CCIF2CC1F2

Carbonyl sulfide
Sulfur dioxide CC1FaCF3
Sulfur hexafluoride

Sulfuric acid CFgCF 3

Hydrogen fluoride CHBCN
Hydrogen chloride CHgI

Hydrogen cyanide Br

Hypochlorous acid BrO
Chlorine atom Br×
Chlorine monoxide

Chlorine nitrate CBrF3

Odd chlorine, inorganic CHBr3
chlorine CH3Br

Methane CH2Br a
Ethane CHBr2C1

Propane C2H4Br2

Ethylene CBrCIF2

Acetylene CF3Br

Name

Formaldehycle

Acetaldehyde
Acetone

Methyl hydroperoxide
Acrolein

Tetrachloroethylene

Methyl chloride
Dichloromethane

Chloroform, trichloromethane
Chlorofluorocarbon

Hydrocarbon

Nonmethane hydrocarbons

Peroxyacetylnitrate

Methyl chloroform
Hexafluoroethane

Carbon tetrachloride (FC-10)
Trichlorofluoromethane

(FC-11)
Dichlorodifluoromethane

(FC-12)
Chlorotrifluoromethane

(FC-13)

Tetrafluoromethane (FC-I4)
Dichlorofluoromethane (FC-21)
Chlorodifluoromethane

(FC-22)
Trichlorotrifluoroethane

(FC-I13)
Dichlorotetrafluoroethane

(FC-114)

Chloropentafluoroethane

(FC-115)
Hexafluoroethane (FC-116)

Methyl cyanide

Methyl iodide
Bromine atom
Bromine monoxide

Odd bromine, inorganic
bromine

Trifluorobromomethane

Bromoform, tribromomethane

Methyl bromide
Dibromomethane
Dibromochloromethane

Dibromoethane

Halon 1211 (BCF) FC-12B1
Halon 1301 FC-13B1
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Appendix H

Pressure-Altitude Conversion Chart

ALTITUDE
KM

3O

28_

26

24

22

20_

18

16--

14_

12_

10_

m

6_

4_

2

0

P R ESS U R E-ALTIT U D E

PRESSURE
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--10
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LEVEL

m 20
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-- 50
4

-- 70

100
3

-- 200
2

-- 300

m

_500

700

1013.3
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KM

PRESSURE
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--0.1

1

UMKEHR
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9

5
7

Altitudes are based on U.S. Standard Atmosphere, 1976. The actual altitude for a given pressure may differ
by as much as 2 kin, depending on season, latitude, and short-term variations.
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