Q8: What are the reactive halogen gases that destroy stratospheric ozone?

Emissions from human activities and natural processes include large sources of chlorine- and bromine-containing gases that eventually reach the stratosphere. When exposed to ultraviolet radiation from the Sun, these halogen source gases are converted to more reactive gases also containing chlorine and bromine. Important examples of the reactive gases that destroy stratospheric ozone are chlorine monoxide (ClO) and bromine monoxide (BrO). These reactive gases participate in "catalytic" reaction cycles that efficiently destroy ozone. Volcanoes can emit some chlorine-containing gases, but these gases are ones that readily dissolve in rainwater and ice and are usually "washed out" of the atmosphere before they can reach the stratosphere.

Reactive gases containing the halogens chlorine and bromine lead to the chemical destruction of stratospheric ozone. Halogen-containing gases present in the stratosphere can be divided into two groups: *halogen source gases* and *reactive halogen gases*. The source gases are emitted at Earth's surface by natural processes and by human activities (see Q7). Once in the stratosphere, the halogen source gases chemically convert at different rates to form the reactive halogen gases. The conversion occurs in the stratosphere instead of the troposphere because solar UV radiation is more intense in the stratosphere.

Reactive halogen gases. The chemical conversion of halogen source gases, which involves ultraviolet sunlight and other chemical reactions, produces a number of reactive halogen gases. These reactive gases contain all of the chlorine and bromine atoms originally present in the source gases.

The most important reactive chlorine- and brominecontaining gases that form in the stratosphere are shown in Figure Q8-1. Away from polar regions, the most abundant are hydrogen chloride (HCl) and chlorine nitrate (ClONO₂). These two gases are considered *reservoir* gases because they do not react directly with ozone but can be converted to the most reactive forms that do chemically destroy ozone. The *most reactive* forms are chlorine monoxide (ClO) and bromine monoxide (BrO), and chlorine and bromine atoms (Cl and Br). A large fraction of available stratospheric bromine is generally in the form of BrO, whereas usually only a small fraction of stratospheric chlorine is in the form of ClO. In polar regions, the reservoirs ClONO₂ and HCl undergo a further conversion on polar stratospheric clouds to form ClO (see Q10). In that case, ClO becomes a large fraction of available reactive chlorine.

Reactive chlorine observations. Reactive chlorine gases have been observed extensively in the stratosphere with both local and remote measurement techniques. The measurements from space at middle latitudes displayed in

Figure Q8-1. Conversion of halogen source gases. Halogen source gases (also known as ozone-depleting substances) are chemically converted to reactive halogen gases primarily in the stratosphere. The conversion requires ultraviolet sunlight and a few other chemical reactions. The short-lived gases undergo some conversion in the troposphere. The reactive halogen gases contain all the chlorine and bromine originally present in the source gases. The reactive gases separate into reservoir gases, which do not destroy ozone, and reactive gases, which participate in ozone destruction cycles (see Q9).

Figure Q8-2 are representative of how the amounts of chlorine-containing gases change between the surface and the upper stratosphere. Available chlorine (see red line in Figure Q8-2) is the sum of chlorine contained in halogen source gases and the reactive gases HCl, $CIONO_2$, CIO, and other minor gases. Available chlorine is constant within a few percent from the surface to 47 kilometers (31 miles) altitude. In the troposphere, available chlorine is contained almost entirely in the source gases described in Figure Q7-1. At higher altitudes, the source gases become a smaller fraction of available chlorine as they are converted to reactive chlorine gases. At the highest altitudes, available chlorine is all in the form of reactive chlorine gases.

Figure Q8-2. Reactive chlorine gas observations. The abundances of chlorine source gases and reactive chlorine gases as measured from space are displayed with altitude for a midlatitude location. In the troposphere (below about 10 kilometers), all chlorine is contained in the source gases. In the stratosphere, reactive chlorine gases increase with altitude as chlorine source gases decrease. This is a consequence of chemical reactions involving ultraviolet sunlight (see Figure Q8-1). The principal reactive gases formed are HCI, CIONO₂, and CIO. Summing the source gases with the reactive gases gives total available chlorine, which is nearly constant with altitude up to 47 km. In the ozone layer, HCl and CIONO₂ are the most abundant reactive chlorine gases. (The unit "parts per trillion" is defined in the caption of Figure Q7-1.)

In the altitude range of the ozone layer at midlatitudes, as shown in Figure Q8-2, the reactive chlorine gases HCl and ClONO_2 account for most of available chlorine. ClO, the most reactive gas in ozone depletion, is a small fraction of available chlorine. This small value limits the amount of ozone destruction that occurs outside of polar regions.

Reactive chlorine in polar regions. Reactive chlorine gases in polar regions in summer look similar to the altitude profiles shown in Figure Q8-2. In winter, however, the presence of polar stratospheric clouds (PSCs) causes further chemical changes (see Q10). PSCs convert HCl and ClONO₂ to ClO when temperatures are near minimum values in the winter Arctic and Antarctic stratosphere. In that case, ClO becomes the principal reactive chlorine species in sunlit regions and ozone loss becomes very rapid. An example of the late-winter ClO and ozone distributions is shown in Figure Q8-3 for the Antarctic stratosphere. These space-based measurements show that CIO abundances are high in the lower stratosphere over a region that exceeds the size of the Antarctic continent (greater than 13 million square kilometers or 5 million square miles). The peak abundance of ClO exceeds 1500 parts per trillion, which is much larger than typical midlatitude values shown in Figure Q8-2 and represents a large fraction of reactive chlorine in that altitude region. Because high ClO amounts cause rapid ozone loss (see Q9), ozone depletion is found in regions of elevated ClO (see Figure Q8-3).

Reactive bromine observations. Fewer measurements are available for reactive bromine gases in the lower stratosphere than for reactive chlorine, in part because of the lower abundance of bromine. The most widely observed bromine gas is bromine monoxide (BrO). Recent observations have shown that measured BrO abundances in the stratosphere are larger than expected from the conversion of the halons and methyl bromide to BrO, suggesting a significant contribution from the very shortlived bromine-containing gases.

Other sources. Some reactive halogen gases are also produced at Earth's surface by natural processes and by human activities. However, because reactive halogen gases are soluble in water, almost all become trapped in the lower atmosphere by dissolving in rainwater and ice, and ultimately are returned to Earth's surface before they can reach the stratosphere. For example, reactive chlorine is present in the atmosphere as sea salt (sodium chloride) produced by evaporation of ocean spray. Because sea salt dissolves in water, this chlorine is removed and does not reach the stratosphere in appreciable quantities. Another ground-level source is emission of chlorine gases from swimming pools, household bleach, and other uses.

Satellite Observations in the Lower Stratosphere

When released to the atmosphere, this chlorine is rapidly converted to forms that are soluble in water and removed. The Space Shuttle and other rocket motors release reactive chlorine gases directly in the stratosphere: in this case, the quantities are very small in comparison with other tropospheric sources.

Volcanoes. Volcanic plumes generally contain large quantities of chlorine in the form of hydrogen chloride

Figure Q8-3. Antarctic chlorine monoxide and ozone. Satellite instruments monitor ozone and reactive chlorine gases in the global stratosphere. Results are shown here for Antarctic winter for a narrow altitude region within the ozone layer. In winter, chlorine monoxide (CIO) reaches high values (1500 parts per trillion) in the ozone layer, much higher than observed anywhere else in the stratosphere because CIO is produced by reactions on polar stratospheric clouds (see Q10). These high CIO values in the lower stratosphere last for 1 to 2 months, cover an area that at times exceeds that of the Antarctic continent, and efficiently destroy ozone in sunlit regions in late winter/early spring. Ozone values measured simultaneously within the ozone layer show very depleted values.

(HCl). Because the plumes also contain a considerable amount of water vapor, the HCl is efficiently scavenged by rainwater and ice and removed from the atmosphere. As a result, most of the HCl in the plume does not enter the stratosphere. After large recent eruptions, the increase in HCl in the stratosphere has been small compared with the total amount of chlorine in the stratosphere from other sources.

Replacing the Loss of Ozone in the Stratosphere

The idea is sometimes put forth that humans could replace the loss of global stratospheric ozone by making ozone and transporting it to the stratosphere. Ozone amounts in the stratosphere reflect a balance between continual production and destruction by mostly naturally occurring reactions (see Q2). The addition of chlorine and bromine to the stratosphere from human activities has increased ozone destruction and lowered stratospheric ozone amounts. Adding manufactured ozone to the stratosphere would upset the existing balance. As a consequence, most added ozone would be destroyed in chemical reactions within weeks to months as the balance was restored. So, it is not practical to consider replacing the loss of global stratospheric ozone because the replacement effort would need to continue indefinitely, or as long as increased chlorine and bromine amounts remained.

Other practical difficulties in replacing stratospheric ozone are the large amounts of ozone required and the delivery method. The total amount of atmospheric ozone is approximately 3,000 megatons (1 megaton = 1 billion kilograms) with most residing in the stratosphere. The replacement of the average global ozone loss of about 4% would require 120 megatons of stratospheric ozone to be distributed throughout the layer located many kilometers above Earth's surface. The energy required to produce this amount of ozone would be a significant fraction of the electrical power generated in the United States, which is now approximately 5 trillion kilowatt hours. Processing and storing requirements for ozone, which is explosive and toxic in large quantities, would increase the energy requirement. In addition, methods suitable to deliver and distribute large amounts of ozone to the stratosphere have not been demonstrated. Concerns for a global delivery system would include further significant energy use and unforeseen environmental consequences.