APPENDIX A

SUMMARY OF ABUNDANCES, LIFETIMES, OZONE DEPLETION POTENTIALS (ODPS), RADIATIVE EFFICIENCIES (RES), GLOBAL WARMING POTENTIALS (GWPS), AND GLOBAL TEMPERATURE CHANGE POTENTIALS (GTPS)

> Lead Author J.B. Burkholder

Contributors Ø. Hodnebrog V.L. Orkin

Cover photo: Experimental apparatus used in fundamental kinetic and photochemical laboratory studies. Laboratory measurements provide key input to the derivation of the parameters reported in this appendix. Photo: *W.* von Dauster, NOAA.

APPENDIX A

SUMMARY OF ABUNDANCES, LIFETIMES,

OZONE DEPLETION POTENTIALS (ODPs),

RADIATIVE EFFICIENCIES (RES), GLOBAL WARMING POTENTIALS (GWPS), AND GLOBAL TEMPERATURE CHANGE POTENTIALS (GTPS)

CONTENTS

APPENDIX A: INTRODUCTION	1
APPENDIX A: SUMMARY OF ABUNDANCES, LIFETIMES, ODPs, REs, GWPs, AND GTPs	2
Hydrocarbons	2
Oxygenated Hydrocarbons	2
Chlorofluorocarbons	2
Hydrochlorofluorocarbons	4
Hydrofluorocarbons	18
Unsaturated Hydrofluorocarbons	
Chlorocarbons and Hydrochlorocarbons	
Unsaturated Hydrochlorocarbons and Chlorocarbons	24
Unsaturated Chlorofluorocarbons and Hydrochlorofluorocarbons	24
Bromocarbons, Hydrobromocarbons and Halons	24
Unsaturated Bromofluorocarbons	
Unsaturated Bromochlorofluorocarbons	
Fully Fluorinated Species	
Halogenated Ethers	
Fluoroesters	
Halogenated Alcohols	
Halogenated Ketones	
lodocarbons	
Special Compounds	
Table Heading Footnotes	
Abundance Footnotes	
Lifetime Footnotes	
ODP Footnotes	42
RE, GWP, and GTP Footnotes	43
REFERENCES	

This page was intentionally left blank.

Appendix A Introduction

Table A-1 in this appendix contains a compilation of atmospheric abundance, lifetime, ozone depletion potential (ODP), and radiative metrics for ozone depleting substances (ODSs), replacement compounds, and related species covered under the umbrella of the present ozone assessment. The table builds upon the metrics reported in various previous assessments from the Intergovernmental Panel on Climate Change (IPCC, 2013) and the World Meteorological Organization and United Nations – Environment (WMO, 2014).

The abundances and metrics reported in Table A-1 were evaluated based on the best available data and analysis methods as described in the table heading footnotes. Table entries have associated abundance, lifetime, ODP, and radiative metric footnotes that provide the literature source, parameters, or method used to derive the reported metric. Long- and short-lived (lifetimes <~0.5 years) source compounds are included in the table. Metrics given for short-lived species are dependent on the time and location of their emission because they do not become atmospherically well-mixed and, hence, the abundances and metrics reported are not valid for all emission scenarios.

In the absence of experimental kinetic or photochemical data for some molecules, the OH radical reactivity and UV photolysis rates were estimated using structure activity relationships (SARs), trends in reactivity and photolysis for a class of compounds, or comparison with similar molecules where experimental data are available. In the absence of experimental infrared absorption spectra, radiative efficiencies were calculated, in some cases, based on theoretically calculated spectra (e.g. for many of the hydrochlorofluorocarbons (HCFCs) included in the table).

The ODPs and global warming potentials (GWPs) given in the table may differ, in some cases, from the official metrics for controlled substances reported in the Montreal Protocol Handbook (Handbook, 2018) due to consideration of recent experimental data, methods of analysis, and/or assessment recommendations (Ammann et al., 2017; Burkholder et al., 2015; IPCC, 2013; Ko et al., 2013; WMO, 2014).

Appendix A

Summary of Abundances, Lifetimes, Ozone Depletion Potentials (ODPs), Radiative Efficiencies (REs), Global Warming Potentials (GWPs), and Global Temperature change Potentials (GTPs)

Table A-1. Atmospheric abundances, lifetimes, ozone depletion potential (ODPs), radiative efficiencies (REs), Global Warming Potentials (GWPs) for 20 and 100-year time horizons, and Global Temperature change Potentials (GTPs) for 20, 50, and 100-year time horizons. Atmospheric abundances are taken from the present Assessment as noted in the footnotes. Global, annually averaged, atmospheric lifetimes (total, arising from tropospheric OH reaction, and arising from stratospheric loss) were derived using the methods and kinetic and photochemical data described in the footnotes. The ODPs reported here are semi-empirical values or from atmospheric model calculations as cited in the compounds footnote. The radiative metrics reported here are based on a CO₂ abundance of 391 ppm (the CO₂

Industrial Designation or	At	WMO (2014) Total	Total Lifetime	Tropospheric (OH Reactive loss)		
Chemical Name	Chemical Formula	(2016) ª	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
Carbon dioxide	CO ₂	402.9 ppm			-	
Methane	CH ₄	1842 ppb	12.4	12.4	10.4	
Fossil methane #	CH ₄		12.4	12.4	10.4	
Nitrous oxide	N ₂ O	329 ppb	121	123	-	
Hydrocarbons						
Propene	CH ₂ =CHCH ₃	_	0.35 days (0.27–0.50 days)	0.4 days (0.27–0.50 days)	0.4 days (0.27–0.50 days)	
Isobutene	(CH ₃) ₂ C=CH ₂	-	0.20 days (0.15–0.29 days)	0.2 days (0.15–0.29 days)	0.2 days (0.15–0.29 days)	
Propane, R-290	CH ₃ CH ₂ CH ₃	_	12.5 days (9.9–27 days)	15 days (9.9–27 days)	15 days (9.9–27 days)	
Isobutane, R-600a	(CH ₃) ₂ CHCH ₃	-	6.0 days (5.2–10.7 days)	7 days (5.2–10.7 days)	7 days (5.2–10.7 days)	
<i>n</i> -pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	_	3.4 days (2.7–6.5 days)	3 days (2.7–6.5 days)	3 days (2.7–6.5 days)	
Cyclopentane	c-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	-	2.7 days (2.2–5.3 days)	3 days (2.2–5.3 days)	3 days (2.2–5.3 days)	
lsopentane	(CH ₃) ₂ CHCH ₂ CH ₃	-	3.4 days (2.9–6.0 days)	4 days (2.9–6.0 days)	4 days (2.9–6.0 days)	
Oxygenated Hydrocarbons						
Methyl formate	СН₃ОСНО	_	66 days (60–143 days)	87 days (60–143 days)	87 days (60–143 days)	
Isopropanol	(CH ₃) ₂ CHOH	-	2.0 days (1.5–2.9 days)	2 days (1.5–2.9 days)	2 days (1.5–2.9 days)	
Methylal	CH ₃ OCH ₂ OCH ₃	-	2.2 days (1.5–2.8 days)	2 days (1.5–2.8 days)	2 days (1.5–2.8 days)	
Chlorofluorocarbons						
CFC-11	CCI ₃ F	230.2 ppt	52	52	-	
CFC-12	CCl ₂ F ₂	515.9 ppt	102	102	-	
CFC-13	CCIF ₃	3.0 ppt	640	640	-	
CFC-112	CCl ₂ FCCl ₂ F	0.4 ppt	59	63.6	-	

absolute GWPs for the 20- and 100-yr time horizons are 2.495×10^{-14} and 9.171×10^{-14} W yr/(m² kg); the CO₂ absolute GTPs for the 20-, 50-, and 100-yr time horizons are 6.841×10^{-16} , 6.167×10^{-16} , and 5.469×10^{-16} K/kg, see Chapter 6) and are consistent with the values reported in IPCC (2013) and the last ozone assessment (WMO, 2014). Radiative efficiencies were calculated using the methods given in Hodnebrog et al. (2013) with lifetime and stratospheric temperature change adjustments applied. Climate-carbon feedbacks are included for CO₂ (see IPCC (2013) for further details). The derivation of GTP assumes a climate sensitivity of 1.06 K (W m⁻²)⁻¹, equivalent to a 3.9 K equilibrium temperature increase in response to a doubling of CO₂, toward the higher end of the uncertainty in climate sensitivity. For further details on the specific values used see Supplementary Material Section S8.12 and references therein in IPCC (2013).

	Stratospheric Lifetime		Stratosphe Lifetime (years) ^e	Radiative	GWP	GWP	GTP	GTP	GTP		Foot	notes	
	(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance ime	O: ODP R: RE, GWI	P, & GTP	
		0	1.375e-5	1	1	1	1	1	A1	L1		R1	
		0	3.63e-4	84	28	67	14	4	A2	L1		R1	
		0	3.63e-4	85	30	68	15	6	A2	L1		R1	
	123	-	3.00e-3	264	265	277	282	234	A3	L:2,3	01	R1	
	-	0	1.5e-4	<<1	<<1	<<1	<<1	<<1			02	R2	
	-	0	6.8e-5	<<1	<<1	<<1	<<1	<<1			02	R2	
	-	0	3.6e-4	<1	<1	<1	<1	<1			02	R2	
	-	0	2.5e-4	<<1	<<1	<<1	<<1	<<1		L4	02	R2	
	-	0	1.7e-4	<<1	<<1	<<1	<<1	<<1		L4	02	R2	
	-	0	1.3e-4	<<1	<<1	<<1	<<1	<<1		L4	02	R2	
	-	0	2.4e-4	<<1	<<1	<<1	<<1	<<1		L4	02	R2	
	-	0	0.045	40	11	12	1.8	1.5		L5	02	R2	
	-	0	1.4e-3	<<1	<<1	<<1	<<1	<<1			02	R2	
	-	0	4.0e-3	<<1	<<1	<<1	<<1	<<1		L6	02	R2	
	55	1.0	0.26	7,090	5,160	7,160	5,480	2,920	A4	L:2,3		R3	
	103	0.73–0.81	0.32	10,800	10,300	11,300	11,000	8,590	A4	L:2,3	0:3,4	R3	
	-	1.0	0.25	10,900	13,900	11,700	14,200	15,900	A4	L7	O5	R3	
	65.4	0.98	0.29	5,500	4,370	5,631	4,715	2,875	A4	L:2,8	06	R4	

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
CFC-112a	CCIF ₂ CCI ₃	0.07 ppt	51	52	_	
CFC-113	CCI ₂ FCCIF ₂	71.7 ppt	93	93	-	
CFC-113a	CCI ₃ CF ₃	0.66 ppt	59	55	-	
CFC-114	CCIF ₂ CCIF ₂	15 ppt	189	189	-	
CFC-114a	CCI ₂ FCF ₃	1 ppt	~100	105	-	
		8.5 ppt	540	540	-	
CFC-216ba		38 ppq	-	135	-	
CFC-216ca	CCIF ₂ CF ₂ CCIF ₂	20 ppq	-	~135	-	
(E)-R316c ((E)-1,2-dichlorohexafluoro-cy- clobutane)	(E)-1,2-c-C ₄ F ₆ Cl ₂		75	75	-	
(Z)-R316c ((Z)-1,2-dichlorohexafluoro-cy- clobutane)	(Z)-1,2-c-C ₄ F ₆ Cl ₂		114	114	-	
Hydrochlorofluorocarbons						
HCFC-21	CHFCI ₂		1.7	1.7	1.8	
HCFC-22	CHF ₂ CI	235.3 ppt	11.9	11.9	13.0	
HCFC-31	CH ₂ FCI	0.080 ppt	1.2	1.2	1.3	
HCFC-121	CHCl ₂ CCl ₂ F		-	1.11	1.17	
HCFC-121a	CHCIFCCI ₃		-	2.67	2.96	
HCFC-122	CHCl ₂ CCIF ₂		_	0.9	0.96	
HCFC-122a	CHCIFCCI ₂ F		-	3.1	3.4	
HCFC-122b	CHF ₂ CCI ₃		-	9.31	12.6	
HCFC-123	CHCl ₂ CF ₃		1.3	1.3	1.38	
HCFC-123a	CHCIFCCIF ₂		4.0	4.0	4.3	
HCFC-123b	CHF ₂ CCl ₂ F		~6	11.8	15.1	
HCFC-124	CHCIFCF ₃	1.1 ppt	5.9	5.9	6.3	
HCFC-124a	CHF ₂ CCIF ₂		~9.2	17	19	
HCFC-131	CHCI ₂ CHCIF		-	0.76	0.752	
HCFC-131a	CH ₂ CICCI ₂ F		-	2.57	2.8	
HCFC-131b	CH ₂ FCCI ₃		-	2.33	2.55	
HCFC-132	CHCIFCHCIF		-	1.73	1.81	
HCFC-132a	CHCl ₂ CHF ₂		_	1.12	1.18	
HCFC-132b	CH ₂ CICCIF ₂		-	3.5	3.7	
HCFC-132c	CH ₂ FCCl ₂ F		4.3	4.1	4.5	
HCFC-133	CHCIFCHF ₂		-	3.1	3.21	
HCFC-133a	CH ₂ CICF ₃	0.38 ppt	4.0	4.6	4.7	
HCFC-133b	CH ₂ FCCIF ₂		-	7.2	7.71	
HCFC-141	CH ₂ CICHCIF		-	1.14	1.19	
HCFC-141a	CH ₂ FCHCl ₂		-	0.50	0.49	

Stratospheric Lifetime		Radiative	GWP GWP		GTP	TP GTP	GTP GTP		Footnotes				
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abı L: Life	undance (time l	D: ODP R: RE, GW	P, & GTP		
53.8	0.86	0.26	4,770	3,455	4,823	3,690	1,970	A4	L:2,8	06	R4		
94.5	0.81–0.82	0.30	6,560	6,080	6,830	6,510	4,860	A4	L:2,3	0:3,4	R3		
57.5	0.73	0.25	5,040	3,750	5,114	4,020	2,230	A4	L:2,8	06	R4		
191	0.50	0.31	7,710	8,580	8,180	9,010	8,530	A4	L:2,3	0:3,4	R3		
106.7	0.72	0.29	6,960	6,670	6 210	7,175	5,650	A4	L:2,8	06	R4		
125	0.20	0.20	5,780	7,510	0,210	7,300	0,290	A4	L.3,9	0.3,4	C.J.		
135	0.55							A4		07			
~135	~0.35							A4	LIU	07			
76	0.46	0.28	4,750	4,050	4,909	4,375	2,935		L11	O8	R5		
115	0.54	0.31	5,500	5,400	5,773	5,800	4,715		L11	O8	R5		
~35	0.036	0.15	545	150	190	26	20	A5	L:12,13	09	R3		
161	0.024–0.034	0.21	5,310	1,780	4,230	845	265	A5	L:3,12,13	O3	R3		
~35	0.019	0.0587	230	65	77	11	9	A5	L1	09	R6		
20	0.030	0.183	245	65	80	11	9	A5	L14	O10	R7		
27.3	0.066	0.180	580	160	235	29	22	A5	L14	O10	R7		
21	0.022	0.17	220	60	70	10	8	A5	L14	09	R3		
34	0.067	0.21	865	235	375	44	33	A5	L14	09	R3		
35.5	0.170	0.213	2,330	715	1,705	255	102	A5	L14	O10	R7		
31	0.01	0.15	290	80	98	14	11	A5		011	R3		
65	0.039	0.23	1,350	370	660	72	51	A5		09	R3		
54	0.124	0.24	3,400	1,130	2,700	530	168	A5	L14	O10	R7		
98	0.022	0.20	1,870	530	1,120	121	74	A5		O5	R3		
161	0.026	0.241	4,675	1,825	4,085	1,260	330	A5	L14	O10	R7		
20	0.019	0.101	115	30	36	5	4	A5	L14	O10	R7		
31	0.056	0.169	645	175	260	32	24	A5	L14	O10	R7		
26	0.054	0.132	460	125	175	22	17	A5	L14	O10	R7		
39	0.025	0.152	440	120	155	21	17	A5	L14	O10	R7		
24	0.020	0.131	245	65	81	12	9	A5	L14	O10	R7		
67	0.038	0.202	1,175	320	540	61	45	A5	L14	O10	R6		
41	0.062	0.17	1,155	315	570	62	44	A5		09	R3		
68	0.017	0.173	1,010	275	435	51	38	A5	L14	O10	R7		
103	0.019	0.15	1,295	355	680	72	50	A5	L15	09	R8		
110	0.024	0.206	2,645	765	1,740	205	108	A5	L14	O10	R7		
30	0.022	0.0772	170	45	56	8	6	A5	L14	O10	R7		
20	0.011	0.0594	55	15	17	3	2	A5	L14	O10	R7		

Industrial Designation or Chemical Name		Atmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-141b	CH ₃ CCl ₂ F	24.4 ppt	9.4	9.4	10.7	
HCFC-142	CH ₂ CICHF ₂		-	2.6	2.73	
HCFC-142a	CH ₂ FCHCIF		-	1.58	1.64	
HCFC-142b	CH ₃ CCIF ₂	22.2 ppt	18	18	19.3	
HCFC-151	CH ₂ CICH ₂ F		-	0.49	0.487	
HCFC-151a	CH ₃ CHCIF		-	1.16	1.2	
HCFC-221aa	CHCl ₂ CCl ₂ CCl ₂ F		-	0.93	0.98	
HCFC-221ab	CHCIFCCI ₂ CCI ₃		-	2.67	2.96	
HCFC-221ba	CHCl ₂ CCIFCCl ₃		_	1.11	1.17	
HCFC-221da	CCI ₃ CHCICCI ₂ F		-	3.29	3.71	
HCFC-221ea	CCl ₃ CHFCCl ₃		-	3.52	3.99	
HCFC-222aa	CHCl ₂ CCl ₂ CClF ₂		-	1.11	1.17	
HCFC-222ab	CHCIFCCI ₂ CCI ₂ F		-	2.67	2.96	
HCFC-222ac	CHF ₂ CCl ₂ CCl ₃		-	9.29	12.6	
HCFC-222ba	CHCl ₂ CCIFCCl ₂ F		-	1.11	1.17	
HCFC-222bb	CHCIFCCIFCCI ₃		-	3.15	3.54	
HCFC-222ca	CHCl ₂ CF ₂ CCl ₃		_	1.38	1.47	
HCFC-222da	CCl ₂ FCHClCCl ₂ F		-	4.48	5.23	
HCFC-222db	CCI ₃ CHCICCIF ₂		-	4.62	5.42	
HCFC-222ea	CCl ₃ CHFCCl ₂ F		-	4.68	5.49	
HCFC-223aa	CHCl ₂ CCl ₂ CF ₃		-	1.11	1.17	
HCFC-223ab	CHCIFCCI ₂ CCIF ₂		-	3.18	3.54	
HCFC-223ac	CHF ₂ CCl ₂ CCl ₂ F		-	9.29	12.6	
HCFC-223ba	CHCl ₂ CCIFCCIF ₂		_	1.39	1.47	
HCFC-223bb	CHCIFCCIFCCI ₂ F		_	3.18	3.54	
HCFC-223bc	CHF ₂ CCIFCCI ₃		-	10.6	15.1	
HCFC-223ca	CHCl ₂ CF ₂ CCl ₂ F		-	1.38	1.47	
HCFC-223cb	CHCIFCF ₂ CCI ₃		-	3.88	4.45	
HCFC-223da	CCl ₂ FCHClCClF ₂		-	6.48	7.86	
HCFC-223db	CCI ₃ CHCICF ₃		-	6.47	8.02	
HCFC-223ea	CCl ₂ FCHFCCl ₂ F		_	6.28	7.74	
HCFC-223eb			-	6.46	8.02	
HCFC-224aa	CHCIFCCI ₂ CF ₃		-	3.15	3.54	
HCFC-224ab	CHF ₂ CCl ₂ CCIF ₂		-	11.3	15.1	
HCFC-224ba	CHCl ₂ CClFCF ₃		_	1.39	1.47	
HCFC-224bb	CHCIFCCIFCCIF ₂		-	4.1	4.45	

typeODPChreeney20-yr100-yr20-yr50-yr100-yr $c_{111} + c_{111} + c_{11$	Stratospheric Lifetime		Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes				
172.30.6690120.1610.4590.8091.9000.2680.1140.40.10.44600.0190.1100.4630.100.4000.40 </th <th>(years) ^e</th> <th>ODP ^f</th> <th>(W m⁻² ppb⁻¹) ^g</th> <th>20-yr ^h</th> <th>100-yr</th> <th>20-yr ⁱ</th> <th>50-yr</th> <th>100-yr</th> <th>A: Abu L: Lifet</th> <th>indance (time</th> <th>O: ODP R: RE, GW</th> <th>P, & GTP</th>	(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (time	O: ODP R: RE, GW	P, & GTP	
6600.0190.1106451.752.2603.220.24A.5L.140.10R74220.0250.1134.001.101.401.401.401.401.401.401.5K.5L.140.10R72120.023-0.0570.1905.1402.0704.5301.4001.4001.4001.4001.401	72.3	0.069–0.102	0.16	2,590	800	1,900	285	114	A5	L:3,13	04	R3	
4420.0150.0134001101400.1914.90.158.1.40.08.2120.023-00570.195.140.2074.531.4901.4904.501.4908.51.400.308.51.400.308.51.400.308.51.400.308.51.400.308.51.400.301.611.721.228.51.400.020.020.0250.0250.02<	60	0.019	0.110	645	175	260	32	24	A5	L14	O10	R7	
12120.023.0.0570.195,1402,0704,5301,4903,90A51,3,100,4R32000.0080.03064.0101121221.22A51.44010R73330.0150.06292.005.56.669.97.7A51.44010R712000.0270.1831.400.834.667.70.551.4010R720100.0320.1741.064.45.38.86.661.4010R720100.0320.1741.064.03.03.32.641.4010R720100.0320.1741.061.160.003.32.641.4010R720110.0380.2436.601.752.953.32.641.4010R720110.0380.2442.001.502.252.82.141.4010R720110.0280.2442.001.501.181.41.41.41.6R720110.0280.2442.001.501.181.41.41.41.6R720110.0280.2441.61.501.41.61.41.61.61.41.61.620110.0280.2451.501.501.561.61.61.61.41.61.61.62011 <t< td=""><td>42</td><td>0.015</td><td>0.113</td><td>400</td><td>110</td><td>140</td><td>19</td><td>15</td><td>A5</td><td>L14</td><td>O10</td><td>R7</td></t<>	42	0.015	0.113	400	110	140	19	15	A5	L14	O10	R7	
1200.0080.03060.400.10120.20.50.60.20.70.50.40.0R330.0150.06290.030.50.660.90.70.50.40.0R2000.0270.1831.400.80.460.70.50.51.40.0R2010.0290.1814.051.061.052.00.150.71.81.81.0R2010.0320.1741.060.45.30.80.61.40.0R2020.0320.1741.061.00.030.80.140.0R2030.0880.2196.01.052.053.30.41.40.0R2040.0280.2242.06.07.31.01.40.0R2050.0380.2345.01.02.252.82.11.40.0R2040.0280.242.06.01.181.41.40.0R2050.140.2345.01.502.52.61.41.40.0R2050.140.241.55.01.61.61.40.0R1.41.61.62060.240.241.55.56.61.61.41.41.61.61.41.61.61.61.61.41.6<	212	0.023-0.057	0.19	5,140	2,070	4,530	1,490	390	A5	L:3,13	04	R3	
330.0150.0629200556697A514010R72000.0270.183140384667514010R72010.0690.181405110165201.0514010R72000.0320.17416044538.86.614010R72010.0320.17416044538.86.614010R72020.0330.2436701803.003.32.4314010R73000.0880.2196401752.953.32.4314010R73010.0880.2196401752.953.32.4314010R73020.0280.2242.206.67.31.014.814010R73100.0280.2241.625.051.181.752.4114100R73110.0290.2551.681.552.553.553.553.551.451.44100R73110.0100.2451.002.255.551.661.411.4100R73130.0590.2851.051.555.551.651.611.41.4100R73140.040.2952.551.651.661.411.41.	20	0.008	0.0306	40	10	12	2	2	A5	L14	010	R7	
2000.0270.01831403846755144010R7270.0690.181405110165201.151.14010R72000.0320.1741604453886.61.14010R7290.0830.2436701803.033.241.44010R73000.0880.2196401752.953.32.41.44010R72010.0280.2242.206.07.31.011.480.14010R72010.0280.2242.206.07.31.011.480.14010R72010.0280.2242.206.07.31.011.480.14010R72110.0280.2241.625.001.1851.757.711.44010R72120.0110.2211.625.001.1851.757.711.44010R72120.0240.0251.601.602.656.61.601.641.44010R72130.0970.2831.123.055.506.61.641.440.141.44	33	0.015	0.0629	200	55	66	9	7	A5	L14	010	R7	
270.0690.1814051101652015144010R7200.0320.1741604433866144010R7290.0830.24367011030034225144010R73000.0880.219640175229533248144010R7200.0280.224220660731008144010R7210.0210.224220660731008144010R7210.0211.6206501.5022528221144010R7310.1910.2211.62056666810164144010R72200.0280.21925666866810144010R7310.0970.2831,120305550616141144010R7310.1010.2451,010225557616141144010R7310.1010.2451,010225557618143144010R7310.1010.2451,0102453651,660143144144101R7310.1040.1282,265556668101443144010R7350.1640.1	20	0.027	0.183	140	38	46	7	5		L14	O10	R7	
10000.0320.017411600.440.530.80.61.40.10R12900.0330.24366011603003.32.451.400.10R13000.0880.2196.401.752.253.32.481.400.10R12000.0280.2242.206.607.750.611.440.10R13100.1100.2345.601.1607.750.711.41.140.10R13110.0280.2101.625.601.181.757.711.440.10R13200.0190.2101.625.601.181.757.711.440.10R13210.0280.2101.625.601.861.631.641.440.10R13200.0280.2101.625.601.861.641.440.10R1R13210.0290.2161.621.651.661.641.441.141.141.143210.0290.2831.123.655.651.661.641.441.14	27	0.069	0.181	405	110	165	20	15		L14	010	R7	
1290.0830.024366701180300A40.251.40.10R73000.0880.2196401.752953.332.241.4010R72000.0280.2242206.07.31.08.281.4010R72010.0280.2245.601.502.252.82.011.40.10R72010.0110.2111.605.001.181.757.711.40.10R72020.0280.2101.605.001.181.757.711.40.10R72030.0280.2101.605.001.181.757.711.40.10R72040.0280.2101.605.001.181.757.711.41.141.0R72140.0280.2101.605.001.181.181.151.14	20	0.032	0.174	160	44	53	8	6		L14	010	R7	
1300.0880.219660175295332414010R72000.0280.224220600731008814010872770.0610.2345601502252.82.111.44010873550.1910.2211.6205001.1851757.7114010872000.0280.2102105606.681008.8144010872010.0280.2102105601502452.82.111.44010872020.0340.2052.506.681008.81.4010872120.0340.2052.506.686.621.011.44010872130.0970.2831.1203.055.506.611.411.4010872140.1010.2451.0102.255.566.681.016.411.40.10872140.1010.2451.0102.255.566.681.016.411.40.10872153.110.0590.2828.552.303.556.756.611.411.40.10872163.120.0240.1552.255.566.681.016.81.440.10872163.150.1640.2892.256	29	0.083	0.243	670	180	300	34	25		L14	010	R7	
2000.0280.024220660731008814401087270.0610.234560150225282114401087350.1910.2211,6205001,1851757114010872000.0280.21021056066810088144010872010.0210.19956015024528221144010872020.0340.19956015024528210144010872130.0970.2831,1203055806243144010873110.1000.2651,08029557061141114010873110.1010.2451,010225566681008144010873110.0590.2828552303754332214401087350.1640.2892,2656951,6602459914401087350.1640.2892,2656951,6602459914401087360.1850.249149149149149140140140140140140140140140350.1640.2892,2656951,660245 <td< td=""><td>30</td><td>0.088</td><td>0.219</td><td>640</td><td>175</td><td>295</td><td>33</td><td>24</td><td></td><td>L14</td><td>O10</td><td>R7</td></td<>	30	0.088	0.219	640	175	295	33	24		L14	O10	R7	
270.0610.2345601502252821144010R350.1910.2211,6205001,185175771144010R200.0280.2102105668108144010R290.0710.1995601502452821144010R220.0340.205250688612100144010R310.0970.2831,12030558062443144010R310.1000.2651,08029557061411144010R310.1010.2451,0102805355739144010R310.0590.28285523037543322144010R350.1640.2892,2656951,66024599144010R360.1850.2992,1406801,64028299144010R	20	0.028	0.224	220	60	73	10	8		L14	010	R7	
35 0.191 0.221 1,620 500 1,185 175 71 L14 010 R7 20 0.028 0.210 210 56 668 10 8 L14 010 R7 29 0.071 0.199 560 150 245 28 21 L14 010 R7 22 0.034 0.205 250 68 866 12 100 L14 010 R7 31 0.097 0.283 1,120 305 580 62 43 L14 010 R7 31 0.097 0.283 1,010 295 570 61 41 14 010 R7 31 0.101 0.245 1,010 280 535 577 61 41 14 010 R7 31 0.101 0.245 1,010 280 535 577 61 41 14 010 R7 31 0.101 0.245 1,010 285 230 375 43	27	0.061	0.234	560	150	225	28	21		L14	010	R7	
20 0.028 0.210 210 56 668 10 8 L14 010 R7 29 0.071 0.199 560 150 245 28 21 14 010 R7 22 0.034 0.205 250 68 86 12 10 L14 010 R7 31 0.097 0.283 1,120 305 580 662 43 L14 010 R7 31 0.100 0.265 1,080 295 570 61 41 144 010 R7 31 0.101 0.245 1,010 280 535 57 39 144 010 R7 31 0.101 0.245 1,010 280 535 57 39 144 010 R7 31 0.102 0.195 205 56 68 10 8 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 <td< td=""><td>35</td><td>0.191</td><td>0.221</td><td>1,620</td><td>500</td><td>1,185</td><td>175</td><td>71</td><td></td><td>L14</td><td>010</td><td>R7</td></td<>	35	0.191	0.221	1,620	500	1,185	175	71		L14	010	R7	
290.0710.199560150245282114010R7220.0340.2052506886121014010R7310.0970.2831,1203055806243144010R7310.1000.2651,080295570614114010R7310.1010.2451,0102805355739144010R7200.0240.1952055666810083144010R7310.0590.2828552303754332144010R7350.1640.2892,2656951,66024599144010R7310.0590.2357101953103627144010R7	20	0.028	0.210	210	56	68	10	8		L14	010	R7	
22 0.034 0.205 250 68 86 12 10 L14 010 R7 31 0.097 0.283 1,120 305 580 62 43 L14 010 R7 31 0.100 0.265 1,080 295 570 61 411 L14 010 R7 31 0.101 0.265 1,080 295 570 61 411 L14 010 R7 31 0.101 0.245 1,010 280 535 57 39 L14 010 R7 20 0.024 0.195 205 56 68 10 8 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 31 0.059 0.235 710 195 310 36 27 L14 010	29	0.071	0.199	560	150	245	28	21		L14	010	R7	
31 0.097 0.283 1,120 305 580 62 43 L14 010 R7 31 0.100 0.265 1,080 295 570 61 411 L14 010 R7 31 0.101 0.245 1,010 280 535 57 39 L14 010 R7 20 0.024 0.195 205 56 68 10 8 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 32 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 331 0.059 0.235 710 195 310 36 27 L14 010	22	0.034	0.205	250	68	86	12	10		L14	010	R7	
31 0.100 0.265 1,080 295 570 61 41 L14 010 R7 31 0.101 0.245 1,010 280 535 57 39 L14 010 R7 20 0.024 0.195 205 56 68 10 8 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 23 0.029 0.258 340 92 116 16 13 L14 010 R7 31 0.059 0.235 710 195 310 36 27 L14 010 R7	31	0.097	0.283	1,120	305	580	62	43		L14	010	R7	
31 0.101 0.245 1,010 280 535 57 39 L14 010 R7 20 0.024 0.195 205 56 68 10 8 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 31 0.029 0.258 340 92 116 16 13 L14 010 R7 31 0.059 0.235 710 195 310 36 27 L14 010 R7 36 0.185 0.249 2.140 680 1.640 282 99 114 010 R7	31	0.100	0.265	1,080	295	570	61	41		L14	010	R7	
20 0.024 0.195 205 56 68 10 8 L14 010 R7 31 0.059 0.282 855 230 375 43 32 L14 010 R7 35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 23 0.029 0.258 340 92 116 16 13 L14 010 R7 31 0.059 0.235 710 195 310 36 27 L14 010 R7	31	0.101	0.245	1,010	280	535	57	39		L14	O10	R7	
31 0.059 0.282 855 230 375 43 32 L14 010 R7 35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 23 0.029 0.258 340 92 116 16 13 L14 010 R7 31 0.059 0.235 710 195 310 36 27 L14 010 R7	20	0.024	0.195	205	56	68	10	8		L14	010	R7	
35 0.164 0.289 2,265 695 1,660 245 99 L14 010 R7 23 0.029 0.258 340 92 116 16 13 L14 010 R7 31 0.059 0.235 710 195 310 36 27 L14 010 R7	31	0.059	0.282	855	230	375	43	32		L14	010	R7	
23 0.029 0.258 340 92 116 16 13 L14 O10 R7 31 0.059 0.235 710 195 310 36 27 L14 O10 R7 36 0.185 0.249 2.140 680 1.640 282 99 114 O10 R7	35	0.164	0.289	2,265	695	1,660	245	99		L14	010	R7	
31 0.059 0.235 710 195 310 36 27 L14 O10 R7 36 0.185 0.249 2.140 680 1.640 282 99 1.14 O10 R7	23	0.029	0.258	340	92	116	16	13		L14	010	R7	
36 0.185 0.249 2.140 680 1.640 282 99 1.14 0.10 R7	31	0.059	0.235	710	195	310	36	27		L14	010	R7	
	36	0.185	0.249	2,140	680	1,640	282	99		L14	010	R7	
22 0.029 0.234 310 83 105 15 12 L14 010 R7	22	0.029	0.234	310	83	105	15	12		L14	010	R7	
30 0.073 0.238 875 240 420 46 33 L14 010 R7	30	0.073	0.238	875	240	420	46	33		L14	010	R7	
37 0.111 0.313 1,850 525 1,155 129 74 L14 010 R7	37	0.111	0.313	1,850	525	1,155	129	74		L14	010	R7	
33 0.117 0.229 1,350 385 845 94 54 L14 010 R7	33	0.117	0.229	1,350	385	845	94	54		L14	010	R7	
33 0.114 0.282 1,620 460 1000 110 64 L14 O10 R7	33	0.114	0.282	1,620	460	1000	110	64		L14	010	R7	
33 0.117 0.262 1,540 440 965 108 62 L14 O10 R7	33	0.117	0.262	1,540	440	965	108	62		L14	010	R7	
29 0.049 0.247 800 215 345 40 30 L14 O10 R7	29	0.049	0.247	800	215	345	40	30		L14	010	R7	
45 0.141 0.306 2,945 960 2,305 430 142 L14 010 R7	45	0.141	0.306	2,945	960	2,305	430	142		L14	010	R7	
24 0.023 0.215 310 83 105 14 12 L14 O10 R7	24	0.023	0.215	310	83	105	14	12		L14	010	R7	
51 0.047 0.283 1,180 320 585 64 45 L14 010 R7	51	0.047	0.283	1,180	320	585	64	45		L14	010	R7	

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-224bc	CHF ₂ CCIFCCI ₂ F		-	11.3	15.1	
HCFC-224ca	CHCl ₂ CF ₂ CCIF ₂		-	1.79	1.92	
HCFC-224cb	CHCIFCF ₂ CCI ₂ F		-	1.57	1.64	
HCFC-224cc	CHF ₂ CF ₂ CCl ₃		-	12.5	19	
HCFC-224da	CCIF ₂ CHCICCIF ₂		-	10.4	12.3	
HCFC-224db	CCI ₂ FCHCICF ₃		-	9.39	12	
HCFC-224ea	CCI ₂ FCHFCCIF ₂		-	9.16	11.6	
HCFC-224eb	CCI ₃ CHFCF ₃		-	8.88	11.9	
HCFC-225aa	CHF ₂ CCl ₂ CF ₃		-	11.8	15.1	
HCFC-225ba	CHCIFCCIFCF ₃		-	4.2	4.45	
HCFC-225bb	CHF ₂ CCIFCCIF ₂		-	15.9	19	
HCFC-225ca	CHCl ₂ CF ₂ CF ₃		0.02 ppt	1.9	2.0	
HCFC-225cb	CHCIFCF ₂ CCIF ₂		0.04 ppt	5.9	6.3	
HCFC-225cc	CHF ₂ CF ₂ CCl ₂ F		-	14.1	19	
HCFC-225da	CCIF ₂ CHCICF ₃		-	16.3	19.5	
HCFC-225ea	CCIF ₂ CHFCCIF ₂		-	15.3	18.1	
HCFC-225eb	CCI ₂ FCHFCF ₃		-	13.4	17.7	
HCFC-226ba	CHF ₂ CCIFCF ₃		-	17	19	
HCFC-226ca	CHCIFCF ₂ CF ₃		-	5.47	5.8	
HCFC-226cb	CHF ₂ CF ₂ CCIF ₂		-	21.6	24.7	
HCFC-226da	CF ₃ CHCICF ₃		-	27.7	32.6	
HCFC-226ea	CCIF ₂ CHFCF ₃		-	24.9	28.8	
HCFC-231aa	CHCl ₂ CCl ₂ CHCIF		-	0.799	0.839	
HCFC-231ab	CH ₂ CICCI ₂ CCI ₂ F		-	1.61	1.73	
HCFC-231ac	CH ₂ FCCl ₂ CCl ₃		-	2.33	2.55	
HCFC-231ba	CHCl ₂ CCIFCHCl ₂		-	0.56	0.586	
HCFC-231bb	CH ₂ CICCIFCCI ₃		-	2.54	2.8	
HCFC-231da	CHCl ₂ CHClCCl ₂ F		-	0.54	0.557	
HCFC-231db	CHCIFCHCICCI ₃		-	1.34	1.43	
HCFC-231ea	CHCl ₂ CHFCCl ₃		-	0.76	0.799	
HCFC-231fa	CCl ₂ FCH ₂ CCl ₃		-	6.26	7.71	
HCFC-232aa	CHCIFCCI ₂ CHCIF		-	1.65	1.77	
HCFC-232ab	CHCl ₂ CCl ₂ CHF ₂		_	1.01	1.07	
HCFC-232ac	CH ₂ CICCI ₂ CCIF ₂		_	2.56	2.8	
HCFC-232ad	CH ₂ FCCl ₂ CCl ₂ F		_	2.33	2.55	
HCFC-232ba	CHCI ₂ CCIFCHCIF		-	0.99	1.04	

Stratospheric Lifetime		eric	Radiative GWP Efficiency 20-yr h 1	P GWP GTP r ^h 100-yr 20-yr	GTP GTP	GTP GTP		Footnotes				
	(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (ime l	D: ODP R: RE, GWI	P, & GTP
	45	0.141	0.308	2,965	970	2,320	430	142		L14	O10	R7
	28	0.028	0.262	480	130	173	23	18		L14	O10	R7
	35	0.022	0.248	400	108	139	19	15		L14	O10	R7
	37	0.174	0.314	3,215	1,090	2,600	550	165		L14	O10	R7
	67	0.096	0.349	3,180	1,010	2,425	410	146		L14	O10	R7
	43	0.119	0.285	2,420	745	1,780	265	107		L14	O10	R7
	43	0.117	0.312	2,600	795	1,895	275	114		L14	O10	R7
	35	0.126	0.235	1,915	580	1,380	195	83		L14	O10	R7
	54	0.094	0.264	2,820	935	2,240	440	139		L14	O10	R7
	74	0.025	0.254	1,175	320	590	65	45		L14	O10	R7
	100	0.069	0.319	4,030	1,520	3,470	985	260		L14	O10	R7
	44	0.025	0.220	470	127	170	22	18	A5	L3	O5	R3
	101	0.033	0.290	1,860	525	1,110	120	73	A5	L3	O5	R3
	55	0.110	0.344	4,080	1,455	3,410	835	230		L14	O10	R7
	100	0.071	0.302	3,860	1,475	3,340	980	255		L14	O10	R7
	99	0.068	0.340	4,210	1,560	3,590	975	260		L14	O10	R7
	55	0.105	0.287	3,310	1,155	2,725	630	180		L14	O10	R7
	161	0.019	0.267	3,790	1,480	3,310	1,020	265		L14	O10	R7
	98	0.013	0.261	1,680	465	965	105	66		L14	O10	R7
	174	0.022	0.341	5,370	2,385	4,915	1,970	540		L14	O10	R7
	185	0.025	0.251	4,315	2,210	4,105	2,075	665		L14	O10	R7
	180	0.023	0.307	5,095	2,455	4,775	2,195	650		L14	O10	R7
	20	0.022	0.128	98	27	31	5	4		L14	O10	R7
	23	0.042	0.180	280	75	98	13	10		L14	O10	R7
	26	0.058	0.156	350	94	135	17	13		L14	O10	R7
	20	0.015	0.114	62	17	19	3	2		L14	O10	R7
	27	0.063	0.163	400	108	159	20	15		L14	O10	R7
	20	0.015	0.136	70	19	22	3	3		L14	O10	R7
	21	0.036	0.144	185	50	63	9	7		L14	O10	R7
	20	0.021	0.131	96	26	30	4	4		L14	O10	R7
	33	0.143	0.213	1,230	350	755	83	49		L14	O10	R7
	245	0.036	0.177	300	82	106	14	11		L14	O10	R7
	20	0.024	0.143	150	41	49	7	6		L14	O10	R7
	29	0.053	0.222	590	160	235	29	22		L14	O10	R7
	26	0.050	0.213	515	140	198	25	19		L14	O10	R7
	20	0.023	0.162	165	45	54	8	6		L14	O10	R7

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-232bb	CH ₂ CICCIFCCI ₂ F		-	2.56	2.8	
HCFC-232bc	CH ₂ FCCIFCCI ₃		-	3.64	4.14	
HCFC-232ca	CHCl ₂ CF ₂ CHCl ₂		-	0.70	0.737	
HCFC-232cb	CH ₂ CICF ₂ CCI ₃		-	4.47	5.21	
HCFC-232da	CHCl ₂ CHClCClF ₂		-	0.82	0.859	
HCFC-232db	CHCIFCHCICCI ₂ F		-	1.51	1.61	
HCFC-232dc	CHF ₂ CHCICCI ₃		-	2.83	3.15	
HCFC-232ea	CHCl ₂ CHFCCl ₂ F		-	0.83	0.872	
HCFC-232eb	CHCIFCHFCCI ₃		-	2.04	2.22	
HCFC-232fa	CCl ₂ FCH ₂ CCl ₂ F		-	9.23	12.5	
HCFC-232fb	CCI ₃ CH ₂ CCIF ₂		-	10.2	14.4	
HCFC-233aa	CHCIFCCI ₂ CHF ₂		-	2.63	2.87	
HCFC-233ab	CH ₂ CICCI ₂ CF ₃		-	2.57	2.8	
HCFC-233ac	CH ₂ FCCI ₂ CCIF ₂		-	3.71	4.14	
HCFC-233ba	CHCIFCCIFCHCIF		-	2.1	2.23	
HCFC-233bb	CHCl ₂ CCIFCHF ₂		-	1.27	1.34	
HCFC-233bc	CH ₂ CICCIFCCIF ₂		-	4.75	5.21	
HCFC-233bd	CH ₂ FCCIFCCI ₂ F		-	3.71	4.14	
HCFC-233ca	CHCl ₂ CF ₂ CHCIF		-	1.27	1.34	
HCFC-233cb	CH ₂ CICF ₂ CCI ₂ F		-	4.57	5.21	
HCFC-233cc	CH ₂ FCF ₂ CCI ₃		-	6.26	7.71	
HCFC-233da	CHCl ₂ CHCICF ₃		-	0.896	0.939	
HCFC-233db	CHCIFCHCICCIF ₂		-	2.37	2.52	
HCFC-233dc	CHF ₂ CHCICCI ₂ F		-	3.55	3.96	
HCFC-233ea	CHCl ₂ CHFCCIF ₂		-	0.982	1.03	
HCFC-233eb	CHCIFCHFCCI ₂ F		-	2.32	2.51	
HCFC-233ec	CHF ₂ CHFCCI ₃		-	4.13	4.77	
HCFC-233fa	CCl ₂ FCH ₂ CCIF ₂		-	15.4	23.3	
HCFC-233fb	CCI ₃ CH ₂ CF ₃		-	16.4	29.3	
HCFC-234aa	CHF ₂ CCI ₂ CHF ₂		-	6.51	7.54	
HCFC-234ab	CH ₂ FCCl ₂ CF ₃		-	3.76	4.14	
HCFC-234ba	CHCIFCCIFCHF ₂		-	3.39	3.61	
HCFC-234bb	CH ₂ CICCIFCF ₃		_	4.84	5.21	
HCFC-234bc	CH ₂ FCCIFCCIF ₂		_	7.01	7.71	
HCFC-234ca	CHCIFCF ₂ CHCIF		_	2.74	2.9	
HCFC-234cb	CHCl ₂ CF ₂ CHF ₂		-	1.65	1.74	

Stratospheric Lifetime		Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes				
	(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abun L: Lifetin	idance (me	D: ODP R: RE, GWI	P, & GTP
	29	0.053	0.222	590	160	235	29	22	l	L14	O10	R7
	30	0.075	0.205	770	210	360	40	29	l	L14	O10	R7
	20	0.017	0.130	95	26	30	4	4	l	L14	O10	R7
	31	0.090	0.208	950	260	490	53	37	l	L14	O10	R7
	20	0.019	0.178	151	41	48	7	6	l	L14	O10	R7
	24	0.033	0.200	310	84	108	15	12	l	L14	O10	R7
	28	0.060	0.184	540	145	225	27	20	l	L14	O10	R7
	20	0.019	0.165	142	38	45	7	5	l	L14	O10	R7
	25	0.045	0.183	390	104	143	19	15	l	L14	O10	R7
	35	0.176	0.267	2,255	690	1,645	242	99	l	L14	O10	R7
	36	0.194	0.249	2,255	710	1,710	280	103	l	L14	O10	R7
	32	0.043	0.185	545	145	220	27	20	l	L14	O10	R7
	31	0.042	0.194	560	150	225	27	21	l	L14	O10	R7
	35	0.057	0.250	1,030	280	490	54	39	l	L14	O10	R7
	38	0.031	0.202	475	128	178	23	18	l	L14	O10	R7
	23	0.023	0.171	245	66	81	11	9	l	L14	O10	R7
	53	0.057	0.261	1,365	375	730	78	53	l	L14	O10	R7
	35	0.057	0.257	1,060	290	500	56	40	l	L14	O10	R7
	23	0.023	0.174	245	67	83	12	9	l	L14	O10	R7
	37	0.069	0.250	1,260	345	660	71	49	l	L14	O10	R7
	33	0.100	0.246	1,650	465	1,020	112	66	l	L14	O10	R7
	20	0.017	0.142	142	38	46	7	5	l	L14	O10	R7
	40	0.034	0.238	630	170	245	31	24	l	L14	O10	R7
	35	0.055	0.245	970	265	445	50	37	l	L14	O10	R7
	20	0.019	0.183	200	54	65	9	8	l	L14	O10	R7
	30	0.038	0.221	575	155	220	28	22	l	L14	O10	R7
	31	0.068	0.236	1,080	295	540	58	41	l	L14	O10	R7
	46	0.207	0.321	4,020	1,495	3,435	940	250	l	L14	O10	R7
	37	0.247	0.204	2,635	1,010	2,285	675	175	l	L14	O10	R7
	47	0.062	0.198	1,500	425	940	105	60	l	L14	O10	R7
	41	0.039	0.215	980	265	465	51	37	l	L14	O10	R7
	57	0.028	0.215	885	240	400	45	34	l	L14	O10	R7
	67	0.035	0.218	1,265	350	680	73	49	l	L14	O10	R7
	77	0.045	0.279	2,245	645	1,455	170	91	l	L14	O10	R7
	51	0.025	0.205	685	185	280	34	26	l	L14	O10	R7
	29	0.020	0.199	400	110	141	19	15	l	L14	O10	R7

Industrial Designation or		WMO (2014) Total	Total	Tropospheric (OH		
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-234cc	CH ₂ CICF ₂ CCIF ₂		-	9.46	10.6	
HCFC-234cd	CH ₂ FCF ₂ CCl ₂ F		-	6.64	7.71	
HCFC-234da	CHCIFCHCICF ₃		-	2.67	2.82	
HCFC-234db	CHF ₂ CHCICCIF ₂		-	5.69	6.18	
HCFC-234ea	CHCl ₂ CHFCF ₃		-	1.06	1.11	
HCFC-234eb	CHCIFCHFCCIF ₂		-	2.88	3.04	
HCFC-234ec	CHF ₂ CHFCCl ₂ F		-	5.32	6.04	
HCFC-234fa	CCIF ₂ CH ₂ CCIF ₂		-	31	43.4	
HCFC-234fb	CCl ₂ FCH ₂ CF ₃		~45	45	98	
HCFC-235ba	CHF ₂ CCIFCHF ₂		-	8.8	9.5	
HCFC-235bb	CH ₂ FCCIFCF ₃		-	7.21	7.71	
HCFC-235ca	CH ₂ CICF ₂ CF ₃		-	9.82	10.6	
HCFC-235cb	CHCIFCF ₂ CHF ₂		-	4.45	4.7	
HCFC-235cc	CH ₂ FCF ₂ CCIF ₂		-	14.2	15.7	
HCFC-235da	CHF ₂ CHCICF ₃		_	7.55	8.09	
HCFC-235ea	CHCIFCHFCF ₃		-	7.36	7.88	
HCFC-235eb	CHF ₂ CHFCCIF ₂		-	3.18	3.33	
HCFC-235fa	CCIF ₂ CH ₂ CF ₃		-	61.7	88.6	
HCFC-241aa	CH ₂ CICCI ₂ CHCIF		-	1.43	1.52	
HCFC-241ab	CH ₂ FCCl ₂ CHCl ₂		-	0.77	0.803	
HCFC-241ac	CH ₃ CCl ₂ CCl ₂ F		_	5.18	6.18	
HCFC-241ba	CH ₂ CICCIFCHCI ₂		-	0.79	0.826	
HCFC-241bb	CH ₃ CCIFCCI ₃		-	7.76	10	
HCFC-241da	CHCI ₂ CHCICHCIF		-	0.56	0.581	
HCFC-241db	CH ₂ CICHCICCI ₂ F		-	0.53	0.549	
HCFC-241dc	CH ₂ FCHCICCI ₃		-	0.75	0.786	
HCFC-241ea	CHCl ₂ CHFCHCl ₂		-	0.42	0.429	
HCFC-241eb	CH ₂ CICHFCCI ₃		-	1.05	1.11	
HCFC-241fa	CHCl ₂ CH ₂ CCl ₂ F		-	0.53	0.555	
HCFC-241fb	CHCIFCH ₂ CCI ₃		-	1.48	1.59	
HCFC-242aa	CHF ₂ CCl ₂ CH ₂ Cl		-	2.13	2.29	
HCFC-242ab	CH ₂ FCCl ₂ CHCIF		-	1.78	1.91	
HCFC-242ac	CH ₃ CCl ₂ CClF ₂		_	8.09	10	
HCFC-242ba	CHCIFCCIFCH ₂ CI		_	1.99	2.11	
HCFC-242bb	CHCl ₂ CCIFCH ₂ F		_	1.03	1.09	
HCFC-242bc	CH ₃ CCIFCCI ₂ F		-	8.09	10	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes		
(years) ^e	ODP ^f	Efficiency (W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abundance L: Lifetime	e O: ODP R: RE, GW	P, & GTP
 85	0.054	0.267	2,705	835	1,990	300	120	L14	O10	R7
48	0.063	0.281	2,160	615	1,370	155	87	L14	O10	R7
50	0.024	0.203	660	180	268	33	25	L14	O10	R7
72	0.039	0.271	1,820	510	1,070	115	71	L14	O10	R7
23	0.014	0.158	205	55	67	10	8	L14	O10	R7
52	0.026	0.241	845	230	355	42	32	L14	O10	R7
45	0.052	0.276	1,745	485	990	105	68	L14	O10	R7
108	0.132	0.347	6,225	3,405	6,005	3,330	1,170	L14	O10	R7
58	0.40	0.264	5,190	3,490	5,190	3,685	1,760		09	R7
121	0.018	0.225	2,375	715	1,700	238	102	L14	O10	R7
110	0.017	0.237	2,140	620	1,410	167	87	L14	O10	R7
126	0.018	0.215	2,455	765	1,830	288	110	L14	O10	R7
85	0.014	0.234	1,375	375	710	76	53	L14	O10	R7
146	0.021	0.282	4,040	1,450	3,385	840	230	L14	O10	R7
112	0.017	0.227	2,130	620	1,430	175	88	L14	O10	R7
111	0.017	0.227	2,085	605	1,385	165	86	L14	O10	R7
69	0.012	0.274	1,160	315	510	59	44	L14	O10	R7
204	0.051	0.297	6,780	5,320	6,930	5,730	3,430	L14	O10	R7
24	0.035	0.116	187	51	64	9	7	L14	O10	R7
20	0.020	0.0937	81	22	25	4	3	L14	O10	R7
32	0.112	0.191	1,090	300	610	65	42	L14	O10	R7
20	0.020	0.121	108	29	34	5	4	L14	O10	R7
34	0.163	0.191	1,545	450	1,050	131	64	L14	O10	R7
20	0.014	0.100	63	17	19	3	2	L14	O10	R7
20	0.014	0.119	71	19	22	3	3	L14	O10	R7
20	0.019	0.115	97	26	31	5	4	L14	O10	R7
20	0.011	0.081	38	10	12	2	1	L14	O10	R7
20	0.027	0.125	147	40	48	7	6	L14	O10	R7
20	0.014	0.117	70	19	22	3	3	L14	O10	R7
22	0.037	0.152	255	69	87	12	10	L14	O10	R7
29	0.039	0.131	340	93	129	17	13	L14	O10	R7
27	0.034	0.132	290	78	103	14	11	L14	O10	R7
42	0.125	0.227	2,065	610	1,430	185	87	L14	O10	R7
37	0.033	0.151	370	100	135	18	14	L14	O10	R7
21	0.021	0.133	168	46	55	8	6	L14	O10	R7
42	0.125	0.244	2,220	655	1,535	199	93	L14	O10	R7

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-242ca	CHCl ₂ CF ₂ CH ₂ Cl		-	1.09	1.15	
HCFC-242cb	CH ₃ CF ₂ CCl ₃		-	12.3	18.7	
HCFC-242da	CHCIFCHCICHCIF		-	1.32	1.38	
HCFC-242db	CHCl ₂ CHClCHF ₂		-	0.73	0.761	
HCFC-242dc	CH ₂ CICHCICCIF ₂		-	1.2	1.25	
HCFC-242dd	CH ₂ FCHClCCl ₂ F		-	0.83	0.871	
HCFC-242ea	CHCl ₂ CHFCHCIF		-	0.72	0.756	
HCFC-242eb	CH ₂ CICHFCCI ₂ F		-	1.24	1.31	
HCFC-242ec	CH ₂ FCHFCCI ₃		-	1.7	1.84	
HCFC-242fa	CHCl ₂ CH ₂ CCIF ₂		-	0.74	0.768	
HCFC-242fb	CHCIFCH ₂ CCl ₂ F		-	1.61	1.71	
HCFC-242fc	CHF ₂ CH ₂ CCl ₃		-	4.14	4.78	
HCFC-243aa	CHF ₂ CCl ₂ CH ₂ F		-	2.99	3.25	
HCFC-243ab	CH ₃ CCl ₂ CF ₃		-	8.33	10	
HCFC-243ba	CHF ₂ CCIFCH ₂ CI		-	3.63	3.88	
HCFC-243bb	CHFCICCIFCH ₂ F		-	2.67	2.82	
HCFC-243bc	CH ₃ CCIFCF ₂ CI		-	15.6	18.7	
HCFC-243ca	CH ₂ CICF ₂ CHCIF		-	2.89	3.14	
HCFC-243cb	CHCl ₂ CF ₂ CH ₂ F		-	1.46	1.54	
HCFC-243cc	CH ₃ CF ₂ CFCl ₂		19.5	18	27.1	
HCFC-243da	CHF ₂ CHCICHFCI		-	1.97	2.07	
HCFC-243db	CH ₂ CICHCICF ₃		-	1.44	1.51	
HCFC-243dc	CH ₂ FCHCICF ₂ CI		-	2.03	2.13	
HCFC-243ea	CHFCICHFCHFCI		-	1.57	1.64	
HCFC-243eb	CHCl ₂ CHFCHF ₂		_	0.90	0.938	
HCFC-243ec	CH ₂ CICHFCF ₂ CI		-	1.7	1.78	
HCFC-243ed	CH ₂ FCHFCFCl ₂		-	2.03	2.17	
HCFC-243fa	CHCl ₂ CH ₂ CF ₃		-	0.78	0.813	
HCFC-243fb	CHFCICH ₂ CF ₂ CI		-	2.24	2.36	
HCFC-243fc	CHF ₂ CH ₂ CFCl ₂		-	5.07	5.73	
HCFC-244ba	CH ₂ FCCIFCHF ₂		-	5.17	5.49	
HCFC-244bb	CH ₃ CCIFCF ₃		-	16.6	18.7	
HCFC-244ca	CH ₂ CICF ₂ CHF ₂		_	6.39	6.82	
HCFC-244cb	CH ₂ FCF ₂ CHFCI		-	4.02	4.24	
HCFC-244cc	CH ₃ CF ₂ CF ₂ CI		_	31.2	38.1	
HCFC-244da	CHF ₂ CHCICHF ₂		-	3.88	4.09	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes		
(years) ^e	ODP ^f	Efficiency (W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abundance L: Lifetime	O: ODP R: RE, GW	P, & GTP
22	0.022	0.144	193	52	63	9	7	L14	O10	R7
36	0.206	0.251	3,045	1,025	2,450	510	154	L14	O10	R7
29	0.024	0.147	238	64	80	11	9	L14	O10	R7
20	0.015	0.119	106	29	33	5	4	L14	010	R7
28	0.023	0.170	250	68	83	12	9	L14	O10	R7
20	0.017	0.159	162	44	52	8	6	L14	010	R7
20	0.015	0.119	106	29	33	5	4	L14	O10	R7
23	0.025	0.167	255	69	85	12	10	L14	010	R7
24	0.034	0.174	365	98	129	17	14	L14	O10	R7
20	0.015	0.153	138	37	43	6	5	L14	O10	R7
26	0.031	0.203	400	109	140	19	15	L14	O10	R7
31	0.075	0.198	1000	270	500	54	38	L14	O10	R7
37	0.036	0.154	620	168	265	31	23	L14	O10	R7
49	0.085	0.205	2,095	625	1,465	195	89	L14	O10	R7
58	0.033	0.146	710	195	330	37	27	L14	O10	R7
50	0.027	0.161	580	157	235	29	22	L14	O10	R7
94	0.088	0.264	4,010	1,500	3,440	955	252	L14	O10	R7
37	0.035	0.182	710	192	295	35	27	L14	O10	R7
27	0.020	0.147	290	78	99	14	11	L14	O10	R7
54	0.19	0.315	5,130	2,060	4,540	1,495	390		09	R6
42	0.022	0.162	430	116	158	21	16	L14	O10	R7
34	0.018	0.138	270	73	92	13	10	L14	O10	R7
43	0.023	0.203	555	150	206	27	21	L14	O10	R7
36	0.019	0.172	365	99	127	17	14	L14	O10	R7
21	0.014	0.141	170	46	55	8	6	L14	O10	R7
38	0.020	0.182	420	113	148	20	16	L14	O10	R7
32	0.026	0.215	590	159	218	28	22	L14	O10	R7
20	0.012	0.120	125	34	40	6	5	L14	010	R7
45	0.024	0.231	700	189	265	34	26	L14	O10	R7
44.0	0.056	0.263	1,765	490	975	104	68	L14	O10	R7
90	0.017	0.173	1,310	360	730	78	51	L14	O10	R7
148	0.027	0.238	4,140	1,600	3,600	1,080	280	L14	O10	R7
101	0.018	0.173	1,580	450	985	109	63	L14	O10	R7
79	0.015	0.178	1,065	290	520	57	41	L14	010	R7
173	0.039	0.277	6,120	3,360	5,905	3,290	1,160	L14	O10	R7
77	0.015	0.182	1,050	285	505	56	40	L14	O10	R7

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-244db	CH ₂ FCHCICF ₃		-	2.44	2.54	
HCFC-244ea	CHF ₂ CHFCHFCI		-	2.39	2.5	
HCFC-244eb	CH ₂ CICHFCF ₃		-	2.04	2.12	
HCFC-244ec	CH ₂ FCHFCF ₂ Cl		-	2.88	3.01	
HCFC-244fa	CHFCICH ₂ CF ₃		-	2.37	2.48	
HCFC-244fb	CHF ₂ CH ₂ CF ₂ CI		-	7.76	8.35	
HCFC-251aa	CH ₂ FCCI ₂ CH ₂ CI		-	1.26	1.34	
HCFC-251ab	CH ₃ CCl ₂ CHFCl		-	1.73	1.85	
HCFC-251ba	CH ₂ CICCIFCH ₂ CI		-	1.34	1.4	
HCFC-251bb	CH ₃ CCIFCHCI ₂		-	1.02	1.07	
HCFC-251da	CH ₂ CICHCICHFCI		-	0.69	0.719	
HCFC-251db	CH ₂ FCHCICHCI ₂		-	0.40	0.416	
HCFC-251dc	CH ₃ CHCICFCI ₂		-	0.52	0.535	
HCFC-251ea	CH ₂ CICHFCHCI ₂		-	0.47	0.489	
HCFC-251eb	CH ₃ CHFCCI ₃		-	0.68	0.709	
HCFC-251fa	CHCIFCH ₂ CCI ₂ H		-	0.33	0.339	
HCFC-251fb	CH ₂ CICH ₂ CCI ₂ F		-	0.45	0.467	
HCFC-251fc	CH ₂ FCH ₂ CCI ₃		-	0.65	0.676	
HCFC-252aa	CH ₂ FCCI ₂ CH ₂ F		-	1.94	2.07	
HCFC-252ab	CH ₃ CCl ₂ CHF ₂		-	4.41	4.93	
HCFC-252ba	CH ₂ CICCIFCH ₂ F		-	2.19	2.31	
HCFC-252bb	CH ₃ CCIFCHCIF		-	2.87	3.04	
HCFC-252ca	CH ₂ CICF ₂ CH ₂ CI		-	2.47	2.61	
HCFC-252cb	CH ₃ CF ₂ CHCl ₂		-	1.19	1.25	
HCFC-252da	CH ₂ CICHCICHF ₂		-	1.0	1.04	
HCFC-252db	CH ₂ FCHCICHCIF		-	1.15	1.2	
HCFC-252dc	CH ₃ CHCICCIF ₂		-	0.77	0.799	
HCFC-252ea	CH ₂ CICHFCHCIF		-	1.02	1.06	
HCFC-252eb	CH ₂ FCHFCHCl ₂		-	0.65	0.67	
HCFC-252ec	CH ₃ CHFCCl ₂ F		-	0.84	0.882	
HCFC-252fa	CHCIFCH ₂ CHCIF		-	1.15	1.19	
HCFC-252fb	CHCl ₂ CH ₂ CHF ₂		-	0.66	0.684	
HCFC-252fc	CH ₂ CICH ₂ CCIF ₂		-	0.94	0.972	
HCFC-252fd	CH ₂ FCH ₂ CCl ₂ F		-	0.70	0.732	
HCFC-253ba	CH ₂ FCCIFCH ₂ F		-	3.66	3.86	
HCFC-253bb	CH ₃ CCIFCHF ₂		-	7.85	8.46	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes			
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abund L: Lifetim	lance C e F): ODP R: RE, GWI	P, & GTP
 57	0.012	0.164	600	162	235	29	23	L1	14	O10	R7
57	0.012	0.191	685	185	267	33	26	L1	14	O10	R7
51	0.011	0.151	460	125	170	22	17	L1	14	010	R7
64	0.013	0.226	975	265	410	49	37	L1	14	O10	R7
56	0.012	0.185	655	178	255	32	25	L1	14	010	R7
111	0.020	0.285	3,060	900	2,080	260	127	L1	14	O10	R7
23	0.028	0.0752	129	35	43	6	5	L1	14	O10	R7
27	0.037	0.110	260	70	93	12	10	L1	14	O10	R7
29	0.027	0.0951	173	47	59	8	7	L1	14	O10	R7
21	0.023	0.109	151	41	49	7	6	L1	14	O10	R7
20	0.016	0.0821	77	21	24	4	3	L1	14	O10	R7
20	0.009	0.0631	35	9	11	2	1	L1	14	O10	R7
20	0.012	0.122	85	23	26	4	3	L1	14	O10	R7
20	0.011	0.0776	50	14	15	2	2	L1	14	O10	R7
20	0.016	0.134	124	34	39	6	5	L1	14	O10	R7
20	0.008	0.0739	33	9	10	2	1	L1	14	O10	R7
20	0.011	0.107	66	18	20	3	2	L1	14	O10	R7
20	0.015	0.103	91	25	28	4	3	L1	14	O10	R7
31	0.029	0.105	310	83	113	15	12	L1	14	O10	R7
42	0.056	0.153	1,010	275	520	56	39	L1	14	O10	R7
44	0.027	0.0992	330	89	125	16	12	L1	14	O10	R7
51	0.032	0.147	640	173	265	32	24	L1	14	O10	R7
47	0.029	0.126	470	127	186	23	18	L1	14	O10	R7
24	0.019	0.146	265	71	87	12	10	L1	14	O10	R7
27	0.016	0.0897	135	37	44	6	5	L1	14	O10	R7
29	0.017	0.101	176	48	58	8	7	L1	14	010	R7
22	0.013	0.149	174	47	55	8	7	L1	14	010	R7
27	0.016	0.112	173	47	57	8	7	L1	14	010	R7
20	0.011	0.0922	90	24	28	4	3	L1	14	010	R7
20	0.015	0.175	223	60	71	10	8	L1	14	010	R7
29	0.017	0.143	250	67	82	12	9	L1	14	O10	R7
20	0.011	0.114	113	31	35	5	4	L1	14	010	R7
25	0.015	0.153	217	59	70	10	8	L1	14	O10	R7
20	0.012	0.155	164	45	52	8	6	L1	14	010	R7
73	0.017	0.131	810	221	380	42	31	L1	14	010	R7
108	0.024	0.184	2,260	665	1,545	195	94	L1	14	O10	R7

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HCFC-253ca	CH ₂ CICF ₂ CH ₂ F		-	4.23	4.47	
HCFC-253cb	CH ₃ CF ₂ CHCIF		-	3.48	3.66	
HCFC-253da	CH ₂ FCHCICHF ₂		-	1.67	1.74	
HCFC-253db	CH ₃ CHCICF ₃		-	1.02	1.06	
HCFC-253ea	CH ₂ CICHFCHF ₂		-	1.44	1.5	
HCFC-253eb	CH ₂ FCHFCHCIF		-	1.5	1.56	
HCFC-253ec	CH ₃ CHFCCIF ₂		-	1.13	1.17	
HCFC-253fa	CHCIFCH ₂ CHF ₂		-	1.83	1.9	
HCFC-253fb	CH ₂ CICH ₂ CF ₃		-	1.05	1.09	
HCFC-253fc	CH ₂ FCH ₂ CCIF ₂		-	1.48	1.54	
HCFC-261aa	CH ₃ CCl ₂ CH ₂ F		-	1.06	1.11	
HCFC-261ba	CH ₃ CCIFCH ₂ CI		-	2.19	2.31	
HCFC-261da	CH ₂ CICHCICH ₂ F		-	0.45	0.462	
HCFC-261db	CH ₃ CHCICHCIF		-	0.47	0.478	
HCFC-261ea	CH ₂ CICHFCH ₂ CI		-	0.54	0.554	
HCFC-261eb	CH ₃ CHFCHCl ₂		-	0.31	0.315	
HCFC-261fa	CH ₂ CICH ₂ CHCIF		-	0.57	0.591	
HCFC-261fb	CH ₂ FCH ₂ CHCl ₂		-	0.33	0.339	
HCFC-261fc	CH ₃ CH ₂ CCl ₂ F		-	0.61	0.638	
HCFC-262ba	CH ₃ CCIFCH ₂ F		-	3.4	3.59	
HCFC-262ca	CH ₃ CF ₂ CH ₂ CI		-	3.2	3.33	
HCFC-262da	CH ₂ FCHCICH ₂ F		-	0.92	0.956	
HCFC-262db	CH ₃ CHCICHF ₂		-	0.64	0.662	
HCFC-262ea	CH ₂ FCHFCH ₂ CI		-	0.83	0.856	
HCFC-262eb	CH ₃ CHFCHFCI		-	0.66	0.685	
HCFC-262fa	CH ₂ CICH ₂ CHF ₂		-	0.80	0.828	
HCFC-262fb	CH ₂ FCH ₂ CHFCI		-	0.87	0.902	
HCFC-262fc	CH ₃ CH ₂ CF ₂ CI		-	1.2	1.24	
HCFC-271ba	CH ₃ CCIFCH ₃		-	5.0	5.37	
HCFC-271da	CH ₃ CHCICH ₂ F		-	0.27	0.278	
HCFC-271ea	CH ₃ CHFCH ₂ Cl		-	0.30	0.302	
HCFC-271fa	CH ₂ CICH ₂ CH ₂ F		-	0.34	0.345	
HCFC-271fb	CH ₃ CH ₂ CHCIF		-	0.49	0.506	
Hydrofluorocarbons						
HFC-23	CHF ₃	28.9 ppt	228	228	243	
HFC-32	CH ₂ F ₂	10 ppt	5.4	5.4	5.5	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes			
(years) ^e	ODP ^f	Efficiency (W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (ime f	D: ODP R: RE, GWI	P, & GTP
79	0.018	0.135	960	265	485	52	37		L14	O10	R7
71	0.017	0.183	1,080	295	490	56	41		L14	O10	R7
44	0.012	0.118	335	91	118	16	13		L14	O10	R7
30	0.009	0.120	208	56	68	10	8		L14	O10	R7
39	0.011	0.113	275	75	95	13	10		L14	O10	R7
40	0.011	0.125	320	86	110	15	12		L14	O10	R7
33	0.009	0.183	350	95	116	16	13		L14	O10	R7
46	0.012	0.175	545	147	196	26	20		L14	O10	R7
31	0.009	0.121	215	58	70	10	8		L14	O10	R7
40	0.011	0.194	490	132	168	23	18		L14	O10	R7
23	0.020	0.0727	132	36	43	6	5		L14	O10	R7
44	0.031	0.0827	310	84	118	15	12		L14	O10	R7
20	0.009	0.0338	26	7	8	1	1		L14	O10	R7
20	0.009	0.0625	50	14	15	2	2		L14	O10	R7
20	0.010	0.0493	45	12	14	2	2		L14	O10	R7
20	0.006	0.0618	33	9	10	2	1		L14	O10	R7
20	0.011	0.0746	73	20	23	3	3		L14	O10	R7
20	0.006	0.0557	32	9	10	1	1		L14	O10	R7
20	0.012	0.137	145	39	45	7	5		L14	O10	R7
69	0.020	0.125	835	227	380	43	32		L14	O10	R7
66	0.019	0.117	730	197	320	37	27		L14	O10	R7
28	0.009	0.0587	107	29	34	5	4		L14	O10	R7
21	0.007	0.0813	103	28	32	5	4		L14	O10	R7
25	0.009	0.0657	107	29	34	5	4		L14	O10	R7
21	0.007	0.0982	128	35	40	6	5		L14	O10	R7
25	0.008	0.0858	135	37	43	6	5		L14	O10	R7
26	0.009	0.0991	170	46	54	8	6		L14	O10	R7
34	0.011	0.168	395	107	131	18	15		L14	O10	R7
83	0.028	0.106	1,225	340	675	72	47		L14	O10	R7
20	0.004	0.0261	17	5	5	1	1		L14	O10	R7
20	0.004	0.0330	23	6	7	1	1		L14	O10	R7
20	0.004	0.0284	22	6	7	1	1		L14	O10	R7
20	0.007	0.0652	75	20	23	3	3		L14	O10	R7
4420	0	0.18	11,085	12,690	11,825	13,340	13,150	A6	L3		R3
124	0	0.11	2,530	705	1,440	154	98	A6	L3		R3

Industrial Designation or	At A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HFC-41	CH₃F		2.8	2.8	2.9	
HFC-125	CHF ₂ CF ₃	20.4 ppt	31	30	32	
HFC-134	CHF ₂ CHF ₂		9.7	10	10.5	
HFC-134a	CH ₂ FCF ₃	90 ppt	14	14	14.1	
HFC-143	CH ₂ FCHF ₂		3.5	3.6	3.70	
HFC-143a	CH ₃ CF ₃	19.1 ppt	51	51	57	
HFC-152	CH ₂ FCH ₂ F		146 days (114-335 days)	172 days (114-335 days)	172 days (114-335 days)	
HFC-152a	CH ₃ CHF ₂	6.7 ppt	1.6	1.6	1.55	
HFC-161	CH ₃ CH ₂ F		66 days (51–154 days)	80 days (51–154 days)	80 days (51–154 days)	
HFC-227ca	CF ₃ CF ₂ CHF ₂		28.2	30	32	
HFC-227ea	CF ₃ CHFCF ₃	1.2 ppt	36	36	37.5	
HFC-236cb	CH ₂ FCF ₂ CF ₃		~13	13.4	14	
HFC-236ea	CHF ₂ CHFCF ₃		11.0	11.4	11.9	
HFC-236fa	CF ₃ CH ₂ CF ₃	0.15 ppt	222	213	253	
HFC-245ca	CH ₂ FCF ₂ CHF ₂		6.5	6.6	6.9	
HFC-245cb	CF ₃ CF ₂ CH ₃		47.1	39.9	43	
HFC-245ea	CHF ₂ CHFCHF ₂		3.2	3.2	3.3	
HFC-245eb	CH ₂ FCHFCF ₃		3.2	3.2	3.3	
HFC-245fa	CHF ₂ CH ₂ CF ₃	2.4 ppt	7.9	7.9	8.2	
HFC-263fb	CH ₃ CH ₂ CF ₃		1.1	1.1	1.16	
HFC-272ca	CH ₃ CF ₂ CH ₃		2.6	9	9.7	
HFC-281ea	CH ₃ CHFCH ₃		23 days (19–46 days)	27 days (19–46 days)	27 days (19–46 days)	
HFC-329p	CHF ₂ CF ₂ CF ₂ CF ₃		~30	32	34	
HFC-338pcc	CHF ₂ CF ₂ CF ₂ CHF ₂		12.9	13.5	14.0	
HFC-356mcf	CH ₂ FCH ₂ CF ₂ CF ₃		1.2	1.2	1.26	
HFC-356mff	CF ₃ CH ₂ CH ₂ CF ₃		8.3	8.5	8.9	
HFC-365mfc	CH ₃ CF ₂ CH ₂ CF ₃	0.94 ppt	8.7	8.9	9.3	
HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	0.27 ppt	16.1	17.0	17.9	
HFC-458mfcf	CF ₃ CH ₂ CF ₂ CH ₂ CF ₃		22.9	23.8	25.5	
HFC-55-10mcff	CF ₃ CF ₂ CH ₂ CH ₂ CF ₂ CF ₃		7.5	7.7	8.0	
HFC-52-13p	CHF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃		32.7	35.2	37.0	
HFC-72-17p	CHF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ - CF ₂ CF ₃		-	23.8	24.9	
Unsaturated Hydrofluorocarb	ons					
HFO-1123	CHF=CF ₂		-	1.4 days	1.4 days	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes			
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (time l	D: ODP R: RE, GWI	P, & GTP
65	0	0.02	430	116	177	21	16		L:12,13		R3
595	0	0.23	6,280	3,450	6,040	3,350	1180	A6	L:3,13		R3
240	0	0.19	3,625	1,135	2,725	440	164				R3
267	0	0.16	3,810	1,360	3,170	770	215	A6	L:3,13		R3
100	0	0.13	1,250	340	580	64	48				R3
612	0	0.16	7,050	5,080	7,110	5,390	2,830	A6	L3		R3
-	0	0.04	64	17	20	3.0	2.4				R3
39	0	0.10	545	148	190	26	21	A6	L:3,13		R3
-	0	0.02	20	6	6	<1	<1				R3
640	0	0.27	5,260	2,865	5,070	2,795	975		L16		R3
673	0	0.26	5,250	3,140	5,140	3,180	1,260	A6	L:3,17		R3
305	0	0.23	3,540	1,235	2,915	670	192				R3
270	0	0.30	4,190	1,370	3,290	620	202				R3
1350	0	0.24	6,785	7,680	7,230	8,090	7,870				R3
165	0	0.24	2,530	720	1,600	180	102				R3
550	0	0.24	6,340	4,000	6,280	4,150	1,800				R3
95	0	0.16	860	233	375	44	32				R3
90	0	0.20	1,070	290	460	54	40				R3
149	0	0.24	2,980	880	2,040	260	124	A6	L3		R3
40	0	0.10	250	68	83	12	9.5				R3
185	0	0.07	1,580	480	1,140	163	69		L18		R3
-	0	-	-	-	-	-	-	A6			R9
675	0	0.31	4,720	2,630	4,565	2,595	935		L19		R3
360	0	-	-	-	-	-	-				R9
40	0	-	-	-	-	-	_				R9
190	0	-	-	-	-	-	-				R9
190	0	0.22	2,660	810	1,915	271	115	A6			R3
365	0	0.359	3,770	1,470	3,295	1,015	265	A6			R10
375	0	-	-	-	-	-	-				R9
175	0	-	-	-	-	-	-				R9
710	0	-	-	-	-	-	-		L20		R9
525	0	-	-	-	-	-	-		L21		R9
-	0	0.0019	<1	<<1	<<1	<<1	<<1		L22		R11

Industrial Designation or	A' A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HFO-1132a	CH ₂ =CF ₂		4.0 days (3–5.7 days)	4.6 days (3–5.7 days)	4.6 days (3–5.7 days)	
HFO-1141	CH ₂ =CHF		2.1 days (1.4–3.1 days)	2.5 days (1.4–3.1 days)	2.5 days (1.4–3.1 days)	
HFO-1234ye(E)	(E)-CHF=CFCHF ₂		<5 days	<5 days	<5 days	
HFO-1234ye(Z)	(Z)-CHF=CFCHF ₂		<5 days	<5 days	<5 days	
HFO-1225ye(E)	(E)-CF ₃ CF=CHF		4.9 days (3.7–6.9 days)	5.7 days (3.7–6.9 days)	5.7 days (3.7–6.9 days)	
HFO-1225ye(Z)	(Z)-CF ₃ CF=CHF		8.5 days (6.2–12 days)	10 days (6.2–12 days)	10 days (6.2–12 days)	
2,3,3,4,4-pentafluorocyclobut-1-ene	c-CH=CFCF ₂ CF ₂ -		-	270 days	270 days	
HFO-1234ze(E)	(E)-CF ₃ CH=CHF		16.4 days (12.8–24 days)	19 days (12.8–24 days)	19 days (12.8–24 days)	
HFO-1234ze(Z)	(Z)-CF ₃ CH=CHF		10.0 days	10.0 days	10.0 days	
3,3,4,4-tetrafluorocyclobut-1-ene	c-CH=CHCF ₂ CF ₂ -		-	84 days	84 days	
HFO-1234yf	CF ₃ CF=CH ₂		10.5 days (8.4–16 days)	12 days (8.4–16 days)	12 days (8.4–16 days)	
HFO-1261zf	CH ₂ FCH=CH ₂		0.7 days (0.5–1.0 days)	0.8 days (0.5–1.0 days)	0.8 days (0.5–1.0 days)	
HFO-1234yc	CF ₂ =CFCH ₂ F		~2 days	~2 days	~2 days	
HFO-1225zc	CF ₂ =CHCF ₃		~2 days	~2 days	~2 days	
HFO-1234zc	CF ₂ =CHCHF ₂		<5 days	<5 days	<5 days	
HFO-1336mzz(<i>E</i>)	(E)-CF ₃ CH=CHCF ₃		_ (~16–30 days)	122 days	122 days	
HFO-1336mzz(Z)	(Z)-CF ₃ CH=CHCF ₃		22 days (16.3–32 days)	27 days (16.3–32 days)	27 days (16.3–32 days)	
HFO-1243zf	CF ₃ CH=CH ₂		7.0 days (5.5–11 days)	9 days (5.5–11 days)	9 days (5.5–11 days)	
HFO-1345zf	C ₂ F ₅ CH=CH ₂		7.6 days (5.8–11.4 days)	9 days (5.8–11.4 days)	9 days (5.8–11.4 days)	
HFO-1438mzz(E)	(E)-CF ₃ CH=CHCF ₂ CF ₃		_ (16–30 days)	122 days	122 days	
HFO-1447zf	CH ₂ =CHCF ₂ CF ₂ CF ₃		_ (6–10 days)	9 days (6–10 days)	9 days (6–10 days)	
3,3,4,4,5,5,6,6,6-Nonafluorohex-1-ene	C ₄ F ₉ CH=CH ₂		7.6 days	9 days	9 days	
3,3,4,4,5,5,6,6,7,7,8,8,8- Tridecafluorooct-1-ene HFO-174-13fz	C ₆ F ₁₃ CH=CH ₂		7.6 days	9 days	9 days	
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- Heptadecafluorodec-1-ene HFO-194-17fz	C ₈ F ₁₇ CH=CH ₂		7.6 days	9 days	9 days	
HFO-1438ezy(E)	(E)-(CF ₃) ₂ CFCH=CHF		-	43 days	43 days	
Chlorocarbons and Hydrochlo	rocarbons					
Methyl chloroform	CH ₃ CCl ₃	2.6 ppt	5.0	5.0	6.1	
Carbon tetrachloride	CCI ₄	80.5 ppt	26.0	32	-	
Methyl chloride	CH ₃ Cl	555 ppt	0.9	0.9	1.57	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes			
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (ime f): ODP R: RE, GWI	P, & GTP
-	0	0.004	<1	<1	<1	<1	<1				R3
-	0	0.002	<1	<1	<1	<1	<1				R3
_	0	-	-	-	-	_	_		L23		R9
-	0	-	-	-	-	-	-		L23		R9
-	0	0.01	<1	<1	<1	<1	<1				R3
-	0	0.02	<1	<1	<1	<1	<1				R3
-	0	0.20	236	64	74	11	8.8		L24		R12
-	0	0.04	4	<1	<1	<1	<1				R3
_	0	0.02	1	<1	<1	<1	<1		L21		R3
-	0	0.10	40.6	11	12	1.8	1.5		L24		R12
-	0	0.02	1	<1	<1	<1	<1	A7			R3
-	0	-	-	-	-	-	-				R9
-	0	-	-	-	-	_	_		L23		R9
-	0	-	-	-	-	-	-		L23		R9
-	0	-	-	-	-	_			L23		R9
-	0	0.13	60	16	18	2.7	2.2		L25		R13
_	0	0.07	6	2	2	<1	<1				R3
-	0	0.01	<1	<1	<1	<1	<1				R3
-	0	0.01	<1	<1	<1	<1	<1				R3
-	0	-	-	-	-	-	-		L26		R9
-	0	_	-	-	-	-	_				R9
-	0	0.03	<1	<1	<1	<1	<1		L27		R3
-	0	0.03	<1	<1	<1	<1	<1		L27		R3
-	0	0.03	<1	<1	<1	<1	<1		L27		R3
_	0	0.34	42	11	12	1.9	1.6		L28		R14
38	0.14-0.17	0.07	555	153	300	32	21	A8	L:3,13	03	R3
44	0.89	0.174	3,790	2,110	3,670	2,080	750	A8	L:13,29	03	R15
30.4	0.015	0.004	16	4.3	5.1	<1	<1	A8	L:3,13,30	03	R15

Industrial Designation or	At	mospheric bundance	WMO (2014) Total	Total	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
Methylene chloride	CH ₂ Cl ₂	34 ppt	144 days (95–1070 days)	180 days (95–1070 days)	180 days (95–1070 days)	
Chloroform	CHCI ₃	8.9 ppt	149 days (97–1145 days)	183 days (97–1145 days)	183 days (97–1145 days)	
1,2-Dichloroethane	CH ₂ CICH ₂ CI	12.8 ppt (10.4–18.3)	65.0 days (41–555 days)	82 days (41–555 days)	82 days (41–555 days)	
Chloroethane	CH ₃ CH ₂ CI		39 days (26–280 days)	48 days (26–280 days)	48 days (26–280 days)	
1-Chloropropane	CH ₃ CH ₂ CH ₂ CI		14 days (10–80 days)	16 days (10–80 days)	16 days (10–80 days)	
2-Chloropropane	CH ₃ CHCICH ₃		18 days (13–95 days)	22 days (13–95 days)	22 days (13–95 days)	
Unsaturated Hydrochlorocarb	ons and Chlorocarbon					
Chloroethene (vinyl chloride)	CH ₂ =CHCI		1.5 days (0.9–2.2 days)	1.7 days (0.9–2.2 days)	1.7 days (0.9–2.2 days)	
1,2-dichloroethene	CH ₂ =CCl ₂		0.9 days (0.5–1.3 days)	1 days (0.5–1.3 days)	1 days (0.5–1.3 days)	
(E)-1,2-dichloroethene	(E)-CCIH=CCIH		– (3.2–6.7 days)	5.5 days (3.2–6.7 days)	5.5 days (3.2–6.7 days)	
(Z)-1,2-dichloroethene	(Z)-CCIH=CCIH		– (3.2–6.7 days)	5.2 days (3.2–6.7 days)	5.2 days (3.2–6.7 days)	
Trichloroethene	CHCI=CCI ₂	0.3 ppt	4.9 days (3.3–7.1 days)	5.6 days (3.3–7.1 days)	5.6 days (3.3–7.1 days)	
Perchloroethene	CCl ₂ =CCl ₂	1.5 ppt	90 days (66–245 days)	110 days (66–245 days)	110 days (66–245 days)	
Unsaturated Chlorofluorocarb	ons and Hydrochlorofl	uorocarbor	15			
CFO-1113 Chlorotrifluoroethene	CF ₂ =CFCI		1.4 days (0.8–2.1 days)	1.5 days (0.8–2.1 days)	1.5 days (0.8–2.1 days)	
HCFO-1233zd <i>(E)</i>	(E)-CF ₃ CH=CHCI		26 days (21–39 days)	42.5 days (34–64 days)	42.5 days (34–64 days)	
HCFO-1233zd <i>(Z)</i>	(Z)-CF ₃ CH=CHCI		- ~(20-40) days	13 days	13 days	
HCFO-1233xf (2-chloro-3,3,3-fluoro-1-propene)	CF ₃ CCI=CH ₂		_ ~(20–40) days	42.5 days (34–64 days)	42.5 days (34–64 days)	
CFO-1215yc (3-chloro-1,1,2,3,3-fluoro-1-propene)	CF ₂ =CFCF ₂ CI		~5 days ~(3–7 days)	~5 days ~(3–7 days)	~5 days ~(3–7 days)	
CFO-1316yff (4,4-dichloro-1,1,2,3,3,4-fluoro-1-butene)	CF ₂ =CFCF ₂ CFCI ₂		~5 days ~(3–7 days)	~5 days ~(3–7 days)	~5 days ~(3–7 days)	
Bromocarbons, Hydrobromoca	arbons and Halons					
Methyl bromide	CH ₃ Br	6.8 ppt	0.8	0.8	1.8	
Methylene bromide	CH ₂ Br ₂	0.9 ppt (0.6–1.7)	123 days (80–890 days)	150 days (80–890 days)	150 days (80–890 days)	
Bromoform	CHBr ₃	1.2 ppt (0.4–4.0)	24 days (15–88 days)	16 days (8–23 days)	57 days (15–88 days)	
Halon-1201	CHBrF ₂		5.2	4.9	5.7	
Halon-1202	CBr ₂ F ₂	0.01 ppt	2.9	2.5	-	
Halon-1211	CBrCIF ₂	3.6 ppt	16.0	16	-	
Halon-1301	CBrF ₃	3.3 ppt	65.0	72	-	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP		Foot	notes	
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (time	D: ODP R: RE, GW	P, & GTP
-	-	0.028	37	10	11	1.7	1.4	A8			R15
-	_	0.07	66	18	20	3.0	2.2	A8			R15
_	_	0.01	5.1	1.4	1.5	<1	<1	A8			R3
_	_	0.004	1.8	<1	<1	<1	<1				R2
-	_	-	-	-	-	-	-				R9
_	_	0.005	0.9	<1	<1	<1	<1				R2
-	_	8.8e-4	<1	<<1	<<1	<<1	<<1				R2
_	_	1.17e-3	<<1	<<1	<<1	<<1	<<1				R2
_	<0.0003	_	-	_	_	_	_			012	R9
_	<0.0003	2.95e-4	<<1	<<1	<<1	<<1	<<1			012	R2
_	<0.004	5.74e-3	<1	<1	<1	<<1	<<1	A9		012	R2
-	_	0.053	21.7	5.9	6.5	1.0	0.8	A9			R2
-	_	-	_	-	-	-	-				R9
_	<0.0004	0.067	13.5	3.7	4.0	0.6	0.5			012	R16
_	<0.0004	0.025	1.5	0.4	0.45	0.07	0.06			012	R16
_	_	_	_	_	_	_	_		L31		R9
-	_	_	-	_	-	-	_		L32		R9
_	_	_	_	_	_	_	_		L32		R9
26.3	0.57	0.004	7.6	2	2.4	<1	<1	A9	L:3,13	03	R3
-	3–4	0.01	5.3	1.4	1.6	<1	<1	A9	L2	012	R3
-	1–5	0.003	<1	<1	<1	<<1	<<1	A9	L2	012	R9
35		0.15	1,240	340	675	72	48		L33		R3
36	1.7	0.27	720	196	285	35	27	A9	L:2,3	O3	R3
41	6.9–7.7	0.29	4,590	1,750	3,950	1,130	300	A9	L:2,3	03	R3
73.5	15.2–19.0	0.30	7,930	6,670	8,160	7,160	4,700	A9	L:2,3	03	R3

Industrial Designation or Chemical Name	A A	tmospheric Abundance	WMO (2014) Total	Total Lifetime	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
Bromochloromethane	CH ₂ BrCl	0.10 ppt (0.07–0.12)	137 days (89–1050 days)	165 days (89–1050 days)	165 days (89–1050 days)	
Bromodichloromethane	CHBrCl ₂	0.3 ppt (0.1–0.9)	78 days (38–250 days)	66 days (38–250 days)	95 days (56–460 days)	
Dibromochloromethane	CHBr ₂ CI	0.3 ppt (0.1–0.8)	59 days (28–225 days)	59 days (28–225 days)	71 days (45–325 days)	
bromoethane	CH ₃ CH ₂ Br		41 days (28–260 days)	50 days (30-260 days)	50 days (30–260 days)	
1,2-dibromoethane	CH ₂ BrCH ₂ Br		70 days (44–590 days)	89 days (44–590 days)	89 days (44–590 days)	
n-bromopropane	CH ₃ CH ₂ CH ₂ Br		12.8 days (9–65 days)	15 days (9–65 days)	15 days (9–65 days)	
lso-bromopropane	CH ₃ CHBrCH ₃		16.7 days (12–88 days)	20 days (12–88 days)	20 days (12–88 days)	
Halon-2301	CH ₂ BrCF ₃		3.4	3.2	3.2	
Halon-2311 / Halothane	CHBrCICF ₃	0.010 ppt	1.0	1.0	1.1	
Halon-2401	CHFBrCF ₃		2.9	2.9	3.1	
Halon-2402 isomer	CF ₃ CFBr ₂		-	2.5	-	
Halon-2402	CBrF ₂ CBrF ₂	0.42 ppt	20.0	28	-	
Unsaturated Bromofluorocarb	ons					
Bromothrifluoroethene	CFBr=CF ₂		1.4 days (0.9–2.0 days)	1.6 days (0.9–2.0 days)	1.6 days (0.9–2.0 days)	
1-Bromo-2,2-fluoroethene	CHBr=CF ₂		2.3 days (1.5–3.4 days)	2.7 days (1.5–3.4 days)	2.7 days (1.5–3.4 days)	
2-Bromo-3,3,3-fluoro-1-propene	CH ₂ =CBrCF ₃		2.7 days (1.8–3.9 days)	3.2 days (1.8–3.9 days)	3.2 days (1.8–3.9 days)	
2-bromo-3,3,4,4,4-fluoro-1-butene	CH ₂ =CBrCF ₂ CF ₃		3.1 days (2.0–4.6 days)	3.7 days (2.0–4.6 days)	3.7 days (2.0–4.6 days)	
4-bromo-3,3,4,4-fluoro-1-butene	CH ₂ =CHCF ₂ CF ₂ Br		6.5 days (4.7–9.5 days)	7.5 days (4.7–9.5 days)	7.5 days (4.7–9.5 days)	
Unsaturated Bromochlorofluo	rocarbons					
4-bromo-3-chloro-3,4,4-trifluoro-1- butene	CH ₂ =CHCCIFCBrF ₂		-	4.5 days	4.5 days	
Fully Fluorinated Species						
Nitrogen trifluoride	NF ₃	1.5 ppt	500.0	569	_	
Perfluorotriethylamine	N(C ₂ F ₅) ₃		-	>1000	-	
Perfluorotripropylamine	N(C ₃ F ₇) ₃		-	>1000	-	
Perfluorotributylamine	N(C ₄ F ₉) ₃		-	>1000	-	
Perfluorotripentylamine	N(C ₅ F ₁₁) ₃		-	>1000	-	
Sulphur hexafluoride	SF ₆	8.9 ppt	3,200.0	3,200	-	
(Trifluoromethyl)sulfur pentafluoride	SF ₅ CF ₃	0.153 ppt	800.0	650–950	-	
PFC-14 (Perfluoromethane)	CF ₄	82.7 ppt	50,000.0	50,000	-	
PFC-116 (Perfluoroethane)	C ₂ F ₆	4.6 ppt	10,000.0	10,000	-	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes		notes		
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (time l	D: ODP R: RE, GWI	P, & GTP	
-	-	0.022	17	4.7	5.2	0.8	0.6	A9			R2	
-	-	-	-	-	-	-	-	A9	L2		R9	
-	-	_	-	-	-	-	_	A9	L2		R9	
_	<0.46	0.0060	1.7	0.5	0.5	<1	<1			012	R2	
_	_	0.012	3.7	1.0	1.1	0.17	0.14				R2	
_	<0.17	0.002	0.2	<1	<1	<<1	<<1			012	R2	
_	_	0.004	0.4	0.1	0.1	<1	<1				R2	
_	_	0.14	620	167	270	31	23				R3	
20	~16	0.14	151	41	19	7	6	۵0		013	R3	
45	_	0.19	675	184	285	34	25		1 33	015	R3	
-	_	-		-		-			134		R9	
41	15.7	0.31	3,920	2,030	3,730	1,900	615	A9	L:3,13	03	R3	
			·	·	ŕ	ŗ			,			
 -	-	-	-	-	-	-	-			014	R9	
-	-	-	-	-	-	-	-			014	R9	
-	<0.05	-	-	-	-	-	_			012	R9	
-	-	-	-	-	-	-	-			014	R9	
-	-	-	-	-	-	-	_			014	R9	
								'				
-	_	0.0135	<1	<1	<1	<<1	<<1		L35	014	R17	
740	0	0.20	12,460	15,750	13,420	16,250	18,035	A10	L:3,36		R3	
-	0	0.68	8,150	10,610	8,800	10,880	12,500		L37		R18	
_	0	0.82	7,055	9,180	7,620	9,410	10,815		L37		R18	
-	0	0.97	6,470	8,420	6,980	8,630	9,910	A10	L37		R18	
_	0	1.07	5,780	7,520	6,240	7,710	8,860		L37		R18	
-	0	0.57	17,500	23,500	18,900	23,800	28,200	A10	L7		R3	
-	0	0.59	13,500	17,400	14,500	17,800	20,200	A10	L38		R3	
-	0	0.09	4,880	6,630	5,270	6,690	8,040	A10	L7		R3	
-	0	0.25	8,210	11,100	8,880	11,200	13,500	A10	L7		R3	

Industrial Designation or Chemical Name	A A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
PFC-c216 (Perfluorocyclopropane)	c-C ₃ F ₆		3,000.0	3,000	-	
PFC-218 (Perfluoropropane)	C ₃ F ₈	0.63 ppt	2,600.0	2,600	-	
PFC-c316 (Perfluorocyclobutene)	c-C ₄ F ₆		-	1.2	1.2	
PFC-c318 (Perfluorocyclobutane)	c-C ₄ F ₈	1.44 ppt	3,200.0	3,200	-	
PFC-31-10 (Perfluorobutane)	n-C ₄ F ₁₀		2,600.0	2,600	-	
PFC-c418 (Perfluorocyclopentene)	c-C ₅ F ₈		31.0 days	1.1	1.1	
PFC-41-12 (Perfluoropentane)	n-C ₅ F ₁₂	0.148 ppt	4,100.0	4,100	-	
PFC-51-14 (Perfluorohexane)	n-C ₆ F ₁₄		3,100.0	3,100	-	
PFC-61-16 (Perfluoroheptane)	n-C ₇ F ₁₆		3,000.0	3,000	-	
PFC-71-18 (Perfluorooctane)	n-C ₈ F ₁₈		3,000.0	3,000	-	
PFC-91-18 (isomer mixture)	C ₁₀ F ₁₈		2,000.0	2,000	-	
PFC-c91-18(Z) (Perfluorodecalin(Z))	(Z)-C ₁₀ F ₁₈		2,000.0	2,000	-	
PFC-c91-18(E) (Perfluorodecalin(E))	(<i>E</i>)-C ₁₀ F ₁₈		2,000.0	2,000	-	
PFC-1114	CF ₂ =CF ₂		1.1 days (0.7–1.6 days)	1.2 days (0.7–1.6 days)	1.2 days (0.7–1.6 days)	
PFC-1216	CF ₃ CF=CF ₂		4.9 days (3.3–7.1 days)	5.5 days (3.3–7.1 days)	5.5 days (3.3–7.1 days)	
Perfluorobuta-1,3-diene	CF ₂ =CFCF=CF ₂		1.1 days	1.1 days	1.1 days	
Perfluorobut-1-ene	CF ₃ CF ₂ CF=CF ₂		6.0 days	6 days	6 days	
Perfluorobut-2-ene (71% (E) and 29% (Z) isomer blend)	CF ₃ CF=CFCF ₃		31.0 days	31 days	31 days	
(E)-Perfluoro-2-butene	(E)-CF ₃ CF=CFCF ₃		-	22 days	22 days	
(Z)-Perfluoro-2-butene	(Z)-CF ₃ CF=CFCF ₃		-	35 days	35 days	
Perfluoro(2-methyl-2-pentene)	(CF ₃) ₂ C=CFCF ₂ CF ₃		-	192 days	192 days	
Halogenated Ethers						
HFE-125	CHF ₂ OCF ₃		119.0	135	147	
HFE-134 (HG-00)	CHF ₂ OCHF ₂		25.4	26.9	28.4	
HFE-143a	CH ₃ OCF ₃		4.8	4.9	5.05	
HFE-152a	CH ₃ OCHF ₂		-	1.8	1.85	
HFE-227ea	CF ₃ CHFOCF ₃		46.7	54.8	58	
HCFE-235ca2 (enflurane)	CHF ₂ OCF ₂ CHFCI		4.3	4.42	4.62	
HCFE-235da2 (isoflurane)	CHF ₂ OCHCICF ₃	0.11 ppt	3.5	3.5	3.7	
HFE-236ca	CHF ₂ OCF ₂ CHF ₂		20.8	22.0	23.1	
HFE-236ea2 (desflurane)	CHF ₂ OCHFCF ₃	3.2 ppt	10.8	14.1	14.8	
HFE-236fa	CF ₃ CH ₂ OCF ₃		~7.5	~7.5	~8	
HFE-245cb2	CF ₃ CF ₂ OCH ₃		5.0	5.0	5.24	
HFE-245fa1	CHF ₂ CH ₂ OCF ₃		6.6	~6.7	~7	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP		Footi	notes	
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (ime l	D: ODP R: RE, GWI	P, & GTP
-	0	0.23	6,850	9,200	7,400	9,310	11,000	A10	L39		R19
-	0	0.28	6,640	8,900	7,180	9,010	10,700	A10	L39		R3
-	0	0.25	425	115	141	20	16		L24		R12
-	0	0.32	7,110	9,540	7,680	9,660	11,500	A10	L7		R3
-	0	0.36	6,870	9,200	7,420	9,320	11,000	A10	L39		R3
-	0	0.28	322	87	106	15	12		L40		R20
-	0	0.41	6,350	8,550	6,860	8,650	10,300	A10	L7		R3
-	0	0.44	5,890	7,910	6,370	8,010	9,490	A10	L7		R3
-	0	0.50	5,830	7,820	6,290	7,920	9,380	A10	L39		R3
-	0	0.55	5,680	7,620	6,130	7,710	9,140	A10	L39		R3
-	0	0.55	5,390	7,190	5,820	7,290	8,570		L39		R3
-	0	0.56	5,430	7,240	5,860	7,340	8,630		L39		R3
-	0	0.48	4,720	6,290	5,090	6,380	7,500		L39		R3
-	0	0.002	<1	<1	<1	<1	<1				R3
-	0	0.01	<1	<1	<1	<1	<1				R3
-	0	0.003	<1	<1	<1	<1	<1				R3
-	0	0.02	<1	<1	<1	<1	<1		L41		R3
-	0	0.07	6	2	2	<1	<1				R3
-	0	0.068	5	1.3	1.4	<1	<1				R3
-	0	-	-	-	-	-	-				R9
-	0	-	-	-	-	-	-				R9
1665	0	0.41	12,615	12,980	13,315	13,860	11,960				R3
500	0	0.44	11,840	5,965	11,215	5,530	1,735				R3
130	0	0.18	1,950	540	1,060	113	75				R3
56	0	-	-	-	-	-	-				R9
968	0	0.44	8,920	6,630	9,060	7,110	3,930				R3
100	0.04	0.41	2,190	600	1,125	121	84			013	R3
86	0.03	0.42	1,800	490	820	93	68	A11		013	R3
436	0	0.56	9,855	4,420	9,050	3,700	1,020				R19
316	0	0.45	6,440	2,300	5,385	1,320	365	A11		013	R3
196	0	0.36	3,350	980	2,240	273	138		L42		R3
134	0	0.33	2,360	655	1,280	136	91				R3
168	0	0.31	2,960	845	1,880	214	119		L43		R3

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HFE-245fa2	CHF ₂ OCH ₂ CF ₃		5.5	5.5	5.8	
HFE-254cb1	CH ₃ OCF ₂ CHF ₂		2.5	2.5	2.62	
HFE-254eb2	CH ₃ OCHFCF ₃		88 days (69–200 days)	110 days (69–200 days)	110 days (69–200 days)	
HFE-263fb2	CF ₃ CH ₂ OCH ₃		23 days (19–47 days)	28 days (19–47 days)	28 days (19–47 days)	
HFE-263m1	CF ₃ OCH ₂ CH ₃		0.4	~145 days	~145 days	
HFE-329mcc2	CHF ₂ CF ₂ OCF ₂ CF ₃		~25	~25	~25	
HFE-338mmz1	(CF ₃) ₂ CHOCHF ₂		21.2	22.3	23.5	
HFE-338mcf2	CF ₃ CH ₂ OCF ₂ CF ₃		~7.5	~7.5	~8	
HFE-347mmz1 (Sevoflurane)	(CF ₃) ₂ CHOCH ₂ F	0.16 ppt	~2	1.9	1.96	
HFE-347mcc3 (HFE-7000)	CH ₃ OCF ₂ CF ₂ CF ₃		5.0	5.1	5.3	
HFE-347mcf2	CHF ₂ CH ₂ OCF ₂ CF ₃		~6.6	~6.7	~7	
HFE-347pcf2	CHF ₂ CF ₂ OCH ₂ CF ₃		5.9	6.1	6.3	
HFE-347mmy1	(CF ₃) ₂ CFOCH ₃		3.7	3.7	3.8	
HFE-347mcf	CHF ₂ OCH ₂ CF ₂ CF ₃		5.6	5.8	6.0	
HFE-356mec3	CH ₃ OCF ₂ CHFCF ₃		~3	2.5	2.62	
HFE-356mff2	CF ₃ CH ₂ OCH ₂ CF ₃		105 days (79–270 days)	128 days (79–270 days)	128 days (79–270 days)	
HFE-356pcf2	CHF ₂ CH ₂ OCF ₂ CHF ₂		~6	~6	~6	
HFE-356pcf3	CHF ₂ OCH ₂ CF ₂ CHF ₂		3.5	3.5	3.7	
HFE-356pcc3	CH ₃ OCF ₂ CF ₂ CHF ₂		~3	2.5	2.62	
HFE-356mmz1	(CF ₃) ₂ CHOCH ₃		61 days (49–128 days)	65 days (49–128 days)	65 days (49–128 days)	
HFE-365mcf3	CF ₃ CF ₂ CH ₂ OCH ₃		19.3 days (17–42 days)	25 days (17–42 days)	25 days (17–42 days)	
HFE-365mcf2	CF ₃ CF ₂ OCH ₂ CH ₃		0.6	219 days	219 days	
HFE-374pc2	CHF ₂ CF ₂ OCH ₂ CH ₃		64 days (49–128 days)	76 days (49–128 days)	76 days (49–128 days)	
HFE-43-10pccc124 (H-Galden 1040x, HG-11)	CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂		13.5	14.1	14.7	
HFE-449s1 (HFE-7100)	C ₄ F ₉ OCH ₃		4.7	4.8	5.0	
<i>n</i> -HFE-7100	n-C ₄ F ₉ OCH ₃		4.7	4.8	5.0	
<i>i</i> -HFE-7100	<i>i</i> -C ₄ F ₉ OCH ₃		4.7	4.8	5.0	
HFE-54-11mecf	CF ₃ CHFCF ₂ OCH ₂ CF ₂ CF ₃		8.8	9.1	9.5	
HFE-569sf2 (HFE-7200, isomer mix)	C ₄ F ₉ OC ₂ H ₅		~0.8	0.8	0.8	
<i>n</i> -HFE-7200	n-C ₄ F ₉ OC ₂ H ₅		0.8	0.8	0.8	
<i>i</i> -HFE-7200	i-C ₄ F ₉ OC ₂ H ₅		0.8	0.63	0.65	
HFE-236ca12 (HG-10)	CHF ₂ OCF ₂ OCHF ₂		25.0	26.5	28.0	
HFE-338pcc13 (HG-01)	CHF ₂ OCF ₂ CF ₂ OCHF ₂		12.9	13.4	14.0	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP		Footr	notes	
(years) ^e	ODP ^f	Efficiency (W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (ime l	D: ODP R: RE, GWI	P, & GTP
145	0	0.36	2,910	810	1,670	179	114				R3
74	0	0.26	1,110	300	440	54	42				R3
-	0	_	-	-	-	-	-				R9
-	0	0.04	6	1.6	1.8	<1	<1		L44		R3
-	0	0.13	102	28	31	4.7	3.8		L45		R3
580	0	0.53	6,960	3,360	6,520	3,010	895		L46		R3
440	0	0.44	6,000	2,715	5,525	2,290	635				R3
196	0	0.44	3,180	930	2,120	259	131		L47		R3
46	0	0.32	685	185	250	33	26	A11		013	R3
135	0	0.35	1,970	545	1,090	116	76				R3
168	0	0.42	3,010	860	1,910	215	121				R3
155	0	0.48	3,170	890	1,930	211	126				R3
104	0	0.32	1,330	365	625	69	51				R3
150	0	-	-	-	-	-	_				R9
74	0	0.30	930	250	370	46	35		L48		R3
-	0	0.17	74	20	22	3.4	2.8				R3
145	0	0.37	2,650	745	1,595	174	105		L49		R3
97	0	0.38	1,640	445	750	84	62				R3
74	0	0.32	990	270	390	48	37		L48		R3
-	0	0.15	33	8.9	9.8	1.5	1.2		L35		R3
-	0	0.05	4.7	1.3	1.4	<1	<1		L50		R3
-	0	0.26	215	58	66	10	8		L51		R19
-	0	0.30	97	26	29	4.4	3.6				R3
315	0	1.02	8,180	2,920	6,835	1,680	464				R3
128	0	0.36	1,530	420	825	88	59				R3
128	0	0.42	1,790	490	960	102	69				R3
128	0	0.35	1,490	410	800	85	57				R3
212	0	-	-	-	-	-	_		L52		R9
27	0	0.30	210	57	66	10	8		L53		R3
27	0	0.35	235	65	75	11	9		L53		R19
22	0	0.24	129	35	40	5.9	4.8		L53		R3
500	0	0.65	11,165	5,575	10,550	5,140	1,591		L54		R3
304	0	0.86	8,595	3,000	7,085	1,630	466				R3

Industrial Designation or Chemical Name	A	tmospheric Abundance	WMO (2014) Total	Total	Tropospheric (OH	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
HG-02 (1,1'-Oxybis[2-(difluorome- thoxy)-1,1,2,2-tetrafluoroethane)	HF ₂ C(OCF ₂ CF ₂) ₂ OCF ₂ H		26	26.9	28.4	
HG-03 (1,1,3,3,4,4,6,6,7,7,9,9,10,10,12,12-Hexade- cafluoro-2,5,8,11-tetraoxadodecane)	HF ₂ C(OCF ₂ CF ₂) ₃ OCF ₂ H		26	26.9	28.4	
HG-04(1,1,3,3,4,4,6,6,7,7,9,9,10,10,12,12,1 3,13,15,15-Eicosafluoro-2,5,8,11,14- pentaoxapentadecane)	HCF ₂ O(CF ₂ CF ₂ O) ₄ CF ₂ H		26	26.9	28.4	
HG-20	HF ₂ C(OCF ₂) ₂ OCF ₂ H		25.0	26.5	28.0	
HG-21	HF ₂ COCF ₂ CF ₂ OCF ₂ OCF ₂ O- CF ₂ H		13.5	13.4	14.0	
HG-30	HF ₂ C(OCF ₂) ₃ OCF ₂ H		25.0	26.5	28.0	
1-Ethoxy-1,1,2,2,3,3,3- heptafluoropropane	CF ₃ CF ₂ CF ₂ OCH ₂ CH ₃		0.8	0.75	0.77	
Fluoroxene	CF ₃ CH ₂ OCH=CH ₂		3.6 days	3.6 days	3.6 days	
1,1,2,2-Tetrafluoro-1-(fluoromethoxy) ethane	CH ₂ FOCF ₂ CF ₂ H		6.2	6.2	6.5	
2-Ethoxy-3,3,4,4,5-pentafluorotetrahydro- 2,5-bis[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl]-furan	C ₁₂ H ₅ F ₁₉ O ₂		1.0	0.81	0.83	
Fluoro(methoxy)methane	CH ₃ OCH ₂ F		73.0 days	73 days	73 days	
Difluoro(methoxy)methane	CH ₃ OCHF ₂		1.1	1.1	1.1	
Fluoro(fluoromethoxy)methane	CH ₂ FOCH ₂ F		0.9	0.9	0.9	
Difluoro(fluoromethoxy)methane	CH ₂ FOCHF ₂		3.3	3.2	3.3	
Trifluoro(fluoromethoxy)methane	CH ₂ FOCF ₃		4.4	4.2	4.4	
HG'-01	CH ₃ OCF ₂ CF ₂ OCH ₃		2.0	1.7	1.74	
HG'-02	CH ₃ O(CF ₂ CF ₂ O) ₂ CH ₃		2.0	1.7	1.74	
HG'-03	CH ₃ O(CF ₂ CF ₂ O) ₃ CH ₃		2.0	1.7	1.74	
HFE-329me3	CF ₃ CFHCF ₂ OCF ₃		40.0	33.6	35.3	
2-Chloro-1,1,2-trifluoro-1-methoxyethane	CH ₃ OCF ₂ CHFCI		1.4	1.43	1.49	
PFPMIE (perfluoropolymethylisopropyl ether)	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃		800.0	800	-	
HFE-216	CF ₃ OCF=CF ₂		8.4 days	1.6 days	1.6 days	
Fluoroesters						
Trifluoromethyl formate	HC(O)OCF ₃		<3.5	<3.5	3.7	
Perfluoroethyl formate	HC(O)OCF ₂ CF ₃		<3.5	<3.6	3.7	
Perfluoropropyl formate	HC(O)OCF ₂ CF ₂ CF ₃		<2.6	<2.6	2.7	
Perfluorobutyl formate	HC(O)OCF ₂ CF ₂ CF ₂ CF ₃		3.0	<2.6	2.7	
2,2,2-Trifluoroethyl formate	HC(O)OCH ₂ CF ₃		0.4	200 days	204 days	
3,3,3-Trifluoropropyl formate	HC(O)OCH ₂ CH ₂ CF ₃		0.3	99 days	110 days	
1,2,2,2-Tetrafluoroethyl formate	HC(O)OCHFCF ₃		3.2	3.1	3.2	

Stratosph Lifetime	eric	Radiative	GWP	GWP	GTP	GTP	GTP		Footr	notes	
(years) ^e	ODP ^f	Efficiency (W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance C ime F): ODP R: RE, GWF	P, & GTP
500	0	1.15	10,435	5,260	9,885	4,875	1,527		L54		R3
500	0	1.43	9,745	4,910	9,230	4,550	1,426		L54		R3
500	0	1.46	7,970	4,015	7,545	3,720	1,166		L54		R3
500	0	0.92	11,630	5,810	10,995	5,350	1,658		L55		R19
304	0	1.71	10,925	3,815	9,005	2,070	592		L56		R19
500	0	1.65	16,500	8,240	15,600	7,595	2,352		L55		R19
25	0	0.28	221	60	70	10	8.3		L51		R19
-	0	0.01	<1	<1	<1	<1	<1		L51		R19
153	0	0.34	3,040	855	1,860	205	121		L51		R19
28	0	0.49	165	45	52	7.6	6.2		L57		R3
-	0	0.07	46	13	14	2	2		L58		R19
35	0	0.17	515	139	168	24	19		L59		R19
30	0	0.19	470	127	150	22	18		L59		R19
92	0	0.30	2,155	585	950	109	82		L59		R19
120	0	0.33	2,620	715	1,315	142	100		L59		R19
51	0	0.29	685	185	245	33	26		L60		R19
51	0	0.56	770	210	275	37	29		L60		R3
51	0	0.76	740	200	260	35	28		L60		R3
680	0	0.48	6,900	3,955	6,715	3,955	1,485		L61		R3
42	0	0.21	455	123	156	22	17		L62		R3
-	0	0.65	7,500	9,710	8,070	9,910	11,300		L63		R3
-	0	0.02	<1	<1	<1	<1	<1		L64		R3
110	0	0.31	2,150	590	985	111	82		L65		R19
110	0	0.44	2,130	580	970	110	81		L66		R19
83	0	0.50	1,380	375	555	68	52		L66		R19
83	0	0.56	1,240	335	500	61	47		L66		R19
20	0	0.16	155	42	48	7	6		L67		R19
20	0	0.13	56	15	17	2.5	2.1		L68		R19
98	0	0.35	1,670	455	720	84	63		L69		R19

Industrial Designation or	A	tmospheric Abundance	WMO (2014) Total	Total Lifetime	Tropospheric (OH Reactive loss)	
Chemical Name	Chemical Formula	(2016) ^a	Lifetime (years) ^b	(years) ^c	Lifetime (years) ^d	
1,1,1,3,3,3-Hexafluoropropan-2-yl formate	HC(O)OCH(CF ₃) ₂		3.2	3.1	3.2	
Perfluorobutyl acetate	CH ₃ C(O)OCF ₂ CF ₂ CF ₂ CF ₃		21.9 days	22 days	22 days	
Perfluoropropyl acetate	CH ₃ C(O)OCF ₂ CF ₂ CF ₃		21.9 days	22 days	22 days	
Perfluoroethyl acetate	CH ₃ C(O)OCF ₂ CF ₃		21.9 days	22 days	22 days	
Trifluoromethyl acetate	CH ₃ C(O)OCF ₃		21.9 days	22 days	22 days	
Methyl carbonofluoridate	FCOOCH ₃		1.8	1.8	1.8	
1,1-Difluoroethyl carbonofluoridate	FC(O)OCF ₂ CH ₃		0.3	110 days	110 days	
1,1-Difluoroethyl 2,2,2-trifluoroacetate	CF ₃ C(O)OCF ₂ CH ₃		0.3	110 days	110 days	
Ethyl 2,2,2-trifluoroacetate	CF ₃ C(O)OCH ₂ CH ₃		21.9 days	22 days	22 days	
2,2,2-Trifluoroethyl 2,2,2-trifluoroacetate	CF ₃ C(O)OCH ₂ CF ₃		54.8 days	180 days	180 days	
Methyl 2,2,2-trifluoroacetate	CF ₃ C(O)OCH ₃		0.6	1.0	1.0	
Methyl 2,2-difluoroacetate	HCF ₂ C(O)OCH ₃		40.1 days	124 days	124 days	
Difluoromethyl 2,2,2-trifluoroacetate	CF ₃ C(O)OCHF ₂		0.3	110 days	110 days	
1,1,2-Trifluoro-2-(trifluoromethoxy)- ethane	CHF ₂ CHFOCF ₃		9.8	9.0	9.3	
1-Ethoxy-1,1,2,3,3,3-hexafluoropropane	CF ₃ CHFCF ₂ OCH ₂ CH ₃		0.4	147 days	150 days	
1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2- tetrafluoroethoxy)-propane	CF ₃ CF ₂ CF ₂ OCHFCF ₃		67.0	59.4	62	
1,1,2,2-Tetrafluoro-3-methoxypropane	CHF ₂ CF ₂ CH ₂ OCH ₃		14.2 days	26 days	26 days	
3,3,3-Trifluoro-propanal	CF ₃ CH ₂ CHO		2 days	5 days	5 days	
Halogenated Alcohols						
3,3,3-Trifluoropropan-1-ol	CF ₃ CH ₂ CH ₂ OH		12 days	15 days	15 days	
2,2,3,3,3-Pentafluoropropan-1-ol	CF ₃ CF ₂ CH ₂ OH		0.3	172 days	172 days	
4,4,4-Trifluorobutan-1-ol	CF ₃ (CH ₂) ₂ CH ₂ OH		4 days	5.4 days	5.4 days	
2,2,3,3,4,4,5,5-Octafluorocyclopentanol	-(CF ₂) ₄ CH(OH)-		0.3	110 days	110 days	
1,1,1,3,3,3-Hexafluoropropan-2-ol	(CF ₃) ₂ CHOH		1.9	1.9	1.95	
3,3,4,4,5,5,6,6,7,7,7- Undecafluoroheptan-1-ol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH		20 days	17 days	17 days	
3,3,4,4,5,5,6,6,7,7,8,8,9,9,9- Pentadecafluorononan-1-ol	CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH		20 days	17 days	17 days	
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundeca-1-o1	CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH		20 days	17 days	17 days	
2,2,3,3,4,4,4-Heptafluorobutan-1-ol	CF ₃ CF ₂ CF ₂ CH ₂ OH		0.6	0.55	0.55	
2,2,3,3-Tetrafluoro-1-propanol	CHF ₂ CF ₂ CH ₂ OH		91.2 days	93 days	93 days	
2,2,3,4,4,4-Hexafluoro-1-butanol	CF ₃ CHFCF ₂ CH ₂ OH		112 days (85–280 days)	134 days (85–280 days)	134 days (85–280 days)	
2-Fluoroethanol	CH ₂ FCH ₂ OH		20.4 days	16 days	16 days	
2,2-Difluoroethanol	CHF ₂ CH ₂ OH		40 days	61 days	61 days	
2,2,2-Trifluoroethanol	CF ₃ CH ₂ OH		0.3	167 days	167 days	

Stratosph Lifetime	eric	Radiative	GWP	GWP 100-yr	WP GTP	GTP	GTP	Footnotes			
(years) ^e	ODP ^f	(W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abuı L: Lifeti	ndance (me f): ODP R: RE, GWF	?, & GTP
96	0	0.33	1,175	320	510	59	44		L68		R19
-	0	0.12	6	2	2	<1	<1		L70		R19
-	0	0.11	6	2	2	<1	<1		L71		R19
-	0	0.10	8	2	2	<1	<1		L71		R19
-	0	0.07	8	2	2	<1	<1		L71		R19
58	0	0.07	350	95	126	17	13		L69		R19
-	0	0.17	90	24	27	4.1	3.4		L72		R19
-	0	0.27	103	28	31	4.7	3.9		L68		R19
-	0	0.05	5	1	1	<1	<1		L73		R19
-	0	0.15	85	23	26	3.9	3.2		L73		R19
 34	0	0.18	315	86	103	15	12		L73		R19
-	0	0.05	35	9	10	1.6	1.3		L73		R19
 -	0	0.24	99	27	30	5	4		L68		R19
250	0	0.35	3,765	1,145	2,720	390	164		L74		R3
 20	0	0.19	88	24	27	4	3		L74		R3
1400	0	0.58	7,750	5,980	7,910	6,435	3,755		L74		R3
-	0	0.03	3	0.9	1	<1	<1		L75		R3
-	0	0.004	<1	<1	<1	<1	<1		L76		R3
-	0	0.02	1.6	<1	<1	<1	<1		L77		R3
 -	0	0.14	99	27	30	4.6	3.7				R3
-	0	0.01	<1	<1	<1	<1	<1				R3
 -	0	0.16	47	13	14	2	2		L78		R3
62	0	0.26	670	182	245	32	25				R3
-	0	0.06	2	<1	<1	<1	<1		L79		R3
-	0	0.07	1.8	<1	<1	<1	<1		L79		R3
-	0	0.05	<1	<1	<1	<1	<1		L79		R3
-	0	0.20	124	34	38	5.7	4.6		L80		R3
-	0	0.11	48	13	14	2	1.8		L81		R3
-	0	0.19	86	23	26	4.0	3.2				R3
-	0	0.02	3	0.8	0.9	<1	<1				R3
-	0	0.04	18	5	5	0.8	0.7				R3
-	0	0.10	103	28	31	4.7	3.8				R3

Industrial Designation or Chemical Name	At A	tmospheric bundance (2016) ^a	WMO (2014) Total Lifetime	Total Lifetime (years) ^c	Tropospheric (OH Reactive loss) Lifetime	
	Chemical Formula		(years) ~	-	(years) ^d	
2,2-3,3,4,4,5,5,5-fluoro-1-pentanol	CF ₃ CF ₂ CF ₂ CF ₂ CH ₂ OH		142 days (111–330 days)	172 days (111–330 days)	172 days (111–330 days)	
Halogenated Ketones						
NOVEC-1230, FK-5-1-12 Perfluoro(2-methyl-3-pentanone)	CF ₃ CF ₂ C(O)CF(CF ₃) ₂		7.0 days (7–14 days)	7 days (7–14 days)	-	
NOVEC-774 Tetradecafluoro-2,4- dimethylpentan-3-one	(CF ₃) ₂ CFC(0)CF(CF ₃) ₂		-	_	_	
Perfluoro(2-methyl-3-hexanone)	CF ₃ CF ₂ CF ₂ C(O)CF(CF ₃) ₂		-	-	-	
lodocarbons						
Methyl iodide	CH ₃ I	0.8 ppt (0.3–2.1)	7 days (3.5–9.6 days)	<14 days (3.5–14 days)	197 days	
Trifluoroiodomethane	CF ₃ I		4 days (0.7–4 days)	<5 days (0.7–5 days)	3.0	
Bromoiodomethane	CH ₂ Brl		-	≤60 mins	145 days	
Chloroiodomethane	CH ₂ CII		-	<100 mins	145 days	
Diiodomethane	CH ₂ I ₂		-	≤5 mins	4 days	
lodoethane	CH ₃ CH ₂ I		4 days (2.4–13.9 days)	<4 days (2.4–13.9 days)	52 days (13–94 days)	
<i>n</i> -iodopropane	CH ₃ CH ₂ CH ₂ I		-	<2 days	15 days	
<i>i</i> -iodopropane	CH ₃ CHICH ₃		_	<1 day	13 days	
1-iodo-heptafluoropropane	CF ₃ CF ₂ CF ₂ I		<2 days	<2 days	3.0	
Special Compounds						
Carbonyl fluoride	COF ₂		_ (5–10 days)	7 days (5–10 days)	-	
Phosphorus tribromide	PBr ₃		- (<0.01 days)	_ (<0.01 days)	_	
Ammonia	NH ₃	-	_ (Few days)	_ (Few days)	110 days	
Carbonyl Sulfide	COS	505 ppt	-	2	-	
Sulfuryl fluoride	SO ₂ F ₂	2.3 ppt	36.0	36.0	>300	

Stratospheric Lifetime		Radiative	GWP	GWP	GTP	GTP	GTP	Footnotes			
(years) ^e	ODP ^f	Efficiency (W m ⁻² ppb ⁻¹) ^g	20-yr ^h	100-yr	20-yr ⁱ	50-yr	100-yr	A: Abu L: Lifet	indance (time	D: ODP R: RE, GWI	P, & GTP
-	0	-	-	-	-	-	-				R9
-	0	0.03	<1	<1	<1	<1	<1		L82		R3
-	0	-	_	-	-	-	_		L83		R21
-	0	_	-	-	-	-	-		L83		R21
-	<0.42	6.0e-4	<<1	<<1	<<1	<<1	<<1	A12	L:20,84, 85,86	012	R2
-	<0.09	_	-	-	-	_	_	A12	L:84, 85,86	012	R22
-	-	-	-	-	-	-	-	A12	L:84, 87,88	015	R22
-	<0.07	-	-	-	-	_	-	A12	L:84, 87,88	012	R22
-	-	-	<<1	<<1	<<1	<<1	<<1	A12	L:84, 87,89	015	R2
-	-	_	-	-	-	-	-		L:84,86, 87,90	015	R22
-	-	-	-	-	-	-	-		L:84, 87,90	O15	R22
-	-	-	<<1	<<1	<<1	<<1	<<1		L:84,87, 90	O15	R2
-	<0.04	-	-	-	-	-	-		L:84,91	O16	R23
0	-	8.0e-3	<1	<1	<1	<1	<1		L92		R2
-	_	_	-	-	-	-	-		L92	014	R9
0	-	1.4e-3	<1	<1	<1	<1	<1		L82		R2
0	-	5.7e-3	43	12	16	2.0	1.6	A10	L93		R2
630	0	0.20	6,840	4,090	6,690	4,140	1,650	A10	L:13,94		R3

Appendix A | Appendix Table A-1

Table Heading Footnotes

- a The data given in the abundance column are only intended to provide a "snapshot" of the compound's atmospheric abundance. The chapter and table(s) cited in the compound's footnote provides the analysis details, previous-ly reported abundances and trends, and references. This summary does not represent a comprehensive survey of the abundance of all molecules included in the table. Compounds included in this table fall into several different abundance classifications: (1) compounds with known sources and global observations for which values are reported in the table, (2) compounds with known sources, but with only local or regional observations for which some values are reported in the table (note that the abundances for very short-lived substances (VSLSs) may represent local observations that can vary with location, altitude, and season), (3) compounds with natural and/or man-made sources that are not addressed in the report chapters, and (4) compounds with no presently known sources or observations.
- b Total lifetime reported in WMO (2014).
- c Total lifetime (T_{Total}) is defined as the combination of the total atmospheric lifetime (T_{Total}^{Atm}), which includes tropospheric loss (OH reaction and UV photolysis) and stratospheric loss (reactions with OH and O(¹D) and UV photolysis), with the lifetimes due to ocean and soil uptake. Except where noted in the footnotes, tropospheric loss due to Cl atom reaction is not included. Mesospheric loss processes are negligible except for very long-lived compounds as noted in the footnotes.

$$\frac{1}{\tau_{Total}^{Atm}} = \frac{1}{\tau_{Trop}} + \frac{1}{\tau_{Strat}} + \frac{1}{\tau_{Meso}}$$
$$\frac{1}{\tau_{Trop}} = \frac{1}{\tau_{OH}^{Trop}} + \frac{1}{\tau_{hv}^{Trop}}$$
$$\frac{1}{\tau_{Strat}} = \frac{1}{\tau_{OH}^{Strat}} + \frac{1}{\tau_{O(ID)}^{Strat}} + \frac{1}{\tau_{hv}^{Strat}}$$
$$\frac{1}{\tau_{Total}} = \frac{1}{\tau_{Total}^{Atm}} + \frac{1}{\tau_{Ocean}} + \frac{1}{\tau_{Soil}}$$

- d The tropospheric partial lifetime due reaction with the OH radical was calculated relative to the lifetime for CH₃CCl₃ (6.1 years) using a temperature of 272 K. OH reaction rate coefficients are taken from Burkholder et al. (2015) unless stated otherwise in the footnote. Lifetimes for very short-lived substances (VSLSs) are reported, although their local lifetimes will depend on the time and location of their emission. A representative range of VSLS local lifetimes taken from WMO (2014) Chapter 1 (Tables 1-5, 1-11) are given in parenthesis where available. The tropospheric OH partial lifetime for CH₃CCl₃ (6.1 years) was calculated from an overall lifetime of 5.0 years derived from the AGAGE and NOAA networks using a stratospheric partial lifetime of 38 years and an ocean partial lifetime of 94 years (Prinn et al., 2005).
- e The stratospheric partial lifetime was estimated based on atmospheric model calculations, where available, and empirical relationships for the OH, O(¹D), and photolysis partial lifetimes. Stratospheric lifetimes are not reported for very short-lived substances (VSLSs). The minimum stratospheric partial lifetime was taken to be 20 years.
 - * Stratospheric OH reactive loss partial lifetimes were estimated based on the empirical correlation derived using 2-D model results reported in Ko et al. (2013): $\log_{10} (\tau^{Strat}_{OH}) = 1.528 + 0.901 \times \log_{10} (\tau^{Trop}_{OH})$.
 - * The O(¹D) lifetime was based on measured or estimated reaction rate coefficients ($k_{reactive'}$ cm³ molecule⁻¹ s⁻¹) and estimated using the empirical lifetime relationship; τ (years) = 3.7 × 10⁻⁸/ $k_{reactive}$. Where experimental data were not available, the O(¹D) reactivity was estimated using the activity relationship for H atom and Cl atom abstraction given in Baasandorj et al. (2013).
 - * Stratospheric photolysis partial lifetimes were taken from model calculations or based on the empirical estimates given in Orkin et al. (2013) or for the HCFCs from Papanastasiou et al. (2018).

- f Atmospheric model calculated and semi-empirical values as cited in the footnotes.
- g Radiative efficiency (RE) values were calculated using the empirical approach given in Hodgenbrog et al. (2013). The values reported in this table are lifetime adjusted using the exponential expression reported in Hodgenbrog et al., (2013) for compounds primarily removed by UV photolysis in the stratosphere and the S shaped curve for compounds primarily removed by reaction with the OH radical. The values also include a +10% stratospheric temperature change adjustment.
- h Global warming potentials (GWPs) are calculated relative to CO₂.
- i Global temperature change potentials (GTPs) calculated relative to CO₂ using the parameterization given in Supplementary Material Section S8.12 and references therein in IPCC (2013).

Abundance Footnotes

- A1. See Chapter 6.
- A2. See Chapter 1, Section 1.5.2 and Table 1-8.
- A3. See Chapter 1, Section 1.5.1 and Table 1-8.
- A4. See Chapter 1, Section 1.2.1 and Table 1-1.
- A5. See Chapter 1, Section 1.2.5 and Table 1-1.
- A6. See Chapter 2, Section 2.3 and Table 2-3.
- A7. See Chapter 2, Section 2.3.5.
- A8. See Chapter 1, Section 1.2 and Tables 1-1, 1-2, 1-3 and 1-4.
- A9. See Chapter 1, Section 1.2 and 1.3 and Tables 1-1 and 1-4.
- A10. See Chapter 1, Section 1.5 and Table 1-8.
- A11. See Chapter 1, Section 1.5.
- A12. See Chapter 1, Section 1.3 and Table 1-4.

Lifetime Footnotes

- L1. Total lifetime reported in WMO (2014).
- L2. Tropospheric photolysis partial lifetimes

Molecule	Formula	Lifetime (years)	Reference
Nitrous oxide	N ₂ O	14,600	SPARC Lifetime Report (Ko et al., 2013) *
Carbon tetrachloride	CCl ₄	1,230	SPARC Lifetime Report (Ko et al., 2013) *
CFC-11	CCl ₃ F	1,770	SPARC Lifetime Report (Ko et al., 2013) *
CFC-12	CCl ₂ F ₂	12,500	SPARC Lifetime Report (Ko et al., 2013) *
CFC-112	CCl ₂ FCCl ₂ F	2,280	Davis et al. (2016)
CFC-112a	CCl ₃ CClF ₂	1,190	Davis et al. (2016)
CFC-113	CCI ₂ FCCIF ₂	8,120	SPARC Lifetime Report (Ko et al., 2013) *
CFC-113a	CCl ₃ CF ₃	1,480	Davis et al. (2016)
CFC-114	CCIF ₂ CCIF ₂	19,600	SPARC Lifetime Report (Ko et al., 2013) *
CFC-114a	CCI ₂ FCF ₃	8,300	Davis et al. (2016)
<i>(E)</i> -R316c	<i>(E)</i> -1,2-c-C ₄ F ₆ Cl ₂	3,600	Papadimitriou et al. (2013b)
<i>(Z)</i> -R316c	(<i>Z</i>)-1,2-c-C ₄ F ₆ Cl ₂	10,570	Papadimitriou et al. (2013b)
Bromodichloromethane	CHBrCl ₂	222 days	WMO (2014) Table 1-5
Dibromochloromethane	CHBr ₂ Cl	160 days	WMO (2014) Table 1-5
Methylene bromide	CH_2Br_2	13.7	WMO (2014) Table 1-5
Bromoform	CHBr ₃	~23 days	Papanastasiou et al. (2014)
Halon-1202	CBr ₂ F ₂	2.74	Papanastasiou et al. (2013)
Halon-1211	CBrCIF ₂	27.2	Papanastasiou et al. (2013)
Halon-1301	CBrF ₃	4,050	SPARC Lifetime Report (Ko et al., 2013) **
Halon-2402	CBrF ₂ CBrF ₂	85.5	Papanastasiou et al. (2013)

* Model mean given in SPARC Table 5.6 scaled to recommended total lifetime.

** Model mean given in SPARC Table 5.6 scaled to CBrF₃ UV cross section reported by Bernard et al. (2015).

- L3. Atmospheric lifetimes recommended in the SPARC Lifetime report (Ko et al., 2013). Note, in some cases there are slight differences between the combination of the partial lifetimes and the recommended total atmospheric lifetime, which was derived from multi-model results and field observations.
- L4. OH rate coefficient taken from Atkinson (2003).
- L5. OH rate coefficient taken from Le Calve et al. (1997).
- L6. Room temperature OH rate coefficient taken from Wallington et al. (1997) and *E*/R assumed to be 1000 K.
- L7. Total lifetime is the best estimate taken from Ravishankara et al. (1993) that includes mesospheric loss due to Lyman- α (121.567 nm) photolysis. Electron reactive loss was included for SF₆.
- L8. Stratospheric partial lifetime was taken from the 2-D model calculations in Davis et al. (2016). These values are in agreement with the values reported in Laube et al. (2014) [59 (43–95) years for CFC-112, 51 (32–113) years for CFC-112a, and 59 (31–305) years for CFC-113a (scaled to a CFC-11 lifetime of 52 years)], but of higher precision.
- L9. The total lifetime includes mesospheric loss due to Lyman-α (121.567 nm) photolysis.
- L10. Lifetime taken from Kloss et al. (2014).
- L11. Stratospheric partial lifetime taken from 2-D model calculations in Papadimitriou et al. (2013b).
- L12. *k*(OH) in the NASA/JPL (Burkholder et al., 2015) data evaluation was updated since the previous assessment resulting in a slight change in the OH tropospheric loss partial lifetime from that given in WMO (2014).
- L13. Ocean and soil loss partial lifetimes

Molecule	Formula	Soil Lifetime (years)	Reference	Ocean Lifetime (years)	Reference	
Methyl chloride	CH ₃ Cl	4.2	Hu et al. (2012)	12	Hu et al. (2013)	
Methyl bromide	CH ₃ Br	3.35	Montzka and Reimann et al. (WMO, 2014)	3.1	Hu et al. (2012)	
Carbon tetrachloride	CCl ₄	375 (288–536)*	Rhew and Happell (2016), SPARC (2016)	183 (147–241)*	Butler et al. (2016)	
HCFC-21	CHCl ₂ F	-		673	Yvon-Lewis and Butler (2002)	
HCFC-22	CHCIF ₂	-		1,174	Yvon-Lewis and Butler (2002)	
HCFC-124	CHCIF- CF ₃	-		1,855	Yvon-Lewis and Butler (2002)	
HCFC-141b	CH ₃ C- Cl ₂ F	_		9,190	Yvon-Lewis and Butler (2002)	
HCFC-142b	CH ₃ C- CIF ₂	-		122,200	Yvon-Lewis and Butler (2002)	
HFC-41	CH ₃ F	_		1,340	Yvon-Lewis and Butler (2002)	
HFC-125	CHF ₂ CF ₃	-		10,650	Yvon-Lewis and Butler (2002)	
HFC-134a	CH ₂ FCF ₃	-		5,909	Yvon-Lewis and Butler (2002)	
HFC-152a	CH ₃ CHF ₂	-		1,958	Yvon-Lewis and Butler (2002)	
Methyl chloroform	CH ₃ CCl ₃	_		94	Yvon-Lewis and Butler (2002)	
Sulfuryl fluoride	SO ₂ F ₂	-		40	Mühle et al. (2009)	

- * Possible range of lifetime given in parenthesis.
- L14. Lifetimes taken from Papanastasiou et al. (2018) where *k*(OH) was calculated using the structure activity relationship (SAR) of DeMore (1996) and stratospheric lifetime estimated as described in footnote e.
- L15. 2-D model calculated stratospheric lifetime reported in McGillen et al. (2015).
- L16. OH reactivity assumed the same as CHF_2CF_3 (HFC-125).
- L17. Stratospheric partial lifetime calculated using 2-D model with OH and O(¹D) rate coefficients recommended in SPARC lifetime report, Chapter 3 (Ko et al., 2013).

- L18. OH reactivity calculated using the structure activity relationships of DeMore (1996) with an assumed E/R of 1700 K.
- L19. OH reactivity calculated using the room temperature rate coefficient reported by Young et al. (2009a) with an assumed *E*/R of 1700 K.
- L20. OH reactivity taken from IUPAC evaluation (Ammann et al., 2017).
- L21. OH reactivity taken from Chen et al. (2011).
- L22. The OH rate coefficient data were taken from Baasandorj and Burkholder (2016).
- L23. No experimental data available for the OH reaction and the lifetimes were estimated based on reactivity trends of fluorinated ethenes and propenes.
- L24. The OH rate coefficient was taken from Jia et al. (2013).
- L25. The OH rate coefficient data were taken from Baasandorj et al. (2018).
- L26. Assumed to be the same as HFO-1336mzz(E).
- L27. OH reactivity was calculated using the room temperature rate coefficient reported by Sulbaek Andersen et al. (2005) with the *E*/R obtained for the OH + CH_2 =CHCF₃ reaction, -170 K.
- L28. OH reactivity was calculated using the rate coefficient data from Papadimitriou and Burkholder (2016).
- L29. Lifetimes recommended in the SPARC CCl₄ report (2016).
- L30. Lifetime due to reaction with Cl-atom of 259 years taken from the SPARC lifetime report, Chapter 5 model-mean (Ko et al., 2013).
- L31. Local lifetime estimated as similar to that of (E)-CF₃CH=CHCl.
- L32. Local lifetime estimated as similar to that of CF₃CF=CF₂.
- L33. Stratospheric photolysis lifetime was estimated using the empirical relationship given in Orkin et al. (2013).
- L34. Lifetime estimated to be similar to that of CBr_2F_2 .
- L35. OH rate coefficient taken from Orkin et al. (2017).
- L36. Tropospheric (84,150 years) and mesospheric (2,531 years) lifetimes taken from 2-D model calculations in Papadimitriou et al. (2013a).
- L37. Estimated total lifetime lower-limit.
- L38. Total lifetime range taken from Takahashi et al. (2002) including mesospheric loss due to Lyman-α (121.567 nm) photolysis, dissociative electron attachment, and solar proton event loss processes.
- L39. Total lifetime estimate based on the increase in Lyman- α (121.567 nm) absorption cross section (increased photolysis rate) with increasing number of $-CF_2$ - groups in the perfluorocarbon.
- L40. OH rate coefficient taken from Zhang et al. (2017).
- L41. Room temperature OH rate coefficient taken from Young et al. (2009b) with the *E*/R assumed to be the same as for the OH + CF₃CF=CF₂ reaction, -415 K.
- L42. Tropospheric OH partial lifetime estimated from that for $CF_3CH_2OCF_2CHF_2$ by adjusting for the reactivity contribution of $-CF_2CHF_2$ determined from the reactivity of $CF_3CF_2OCF_2CHF_2$.
- L43. Tropospheric OH partial lifetime estimated from those for CF₃OCH₃ and CHF₂CH₂CF₃.
- L44. Room temperature OH rate coefficient taken from Oyaro et al. (2005) with an assumed E/R of 500 K.
- L45. Estimated OH reactivity.
- L46. Tropospheric OH partial lifetime estimated to be greater than that of $CHF_2CF_2OCHF_2$ and less than that of $CHF_2CF_2CF_2CF_3$.
- L47. Tropospheric OH partial lifetime estimated to be the same as for CF₃OCH₂CF₃.
- L48. Tropospheric OH partial lifetime estimated to be the same as for CH₃OCF₂CHF₂.
- L49. Tropospheric OH partial lifetime estimated from the sum of the OH partial lifetimes of $CF_3CF_2OCF_2CHF_2$ and $CF_3CF_2OCH_2CHF_2$.
- L50. Room temperature OH rate coefficient taken from Oyaro et al. (2004) with an assumed E/R of 500 K.
- L51. Tropospheric OH partial lifetime estimated in Bravo et al. (2011b).
- L52. Tropospheric OH partial lifetime calculated using the OH rate coefficient from Chen et al. (2005).
- L53. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Christensen et al. (1998) with an assumed *E*/R of 1000 K.
- L54. OH reactivity assumed to be similar to that of HCF_2OCF_2H .
- L55. OH reactivity assumed to be similar to HG-10.
- L56. OH reactivity assumed to be similar to HG-01.
- L57. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Javadi et al. (2007) with an assumed *E*/R of 1000 K.

- L58. Tropospheric OH partial lifetime calculated using the structure activity relationship estimated OH rate coefficient in Urata et al. (2003).
- L59. OH rate coefficient calculated theoretically in Blowers et al. (2008).
- L60. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Sulbaek Andersen et al. (2004) with an assumed *E*/R of 1000 K.
- L61. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Wallington et al. (2004) with an assumed *E*/R of 1000 K.
- L62. Tropospheric OH partial lifetime calculated using the OH rate coefficient from Tokuhashi et al. (1999).
- L63. Lifetime estimated in Young et al. (2006).
- L64. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Mashino et al. (2000) with an assumed *E*/R of -400 K.
- L65. Tropospheric OH partial lifetime calculated using the OH rate coefficient from Chen et al. (2004a).
- L66. Tropospheric OH partial lifetime calculated using the OH rate coefficient from Chen et al. (2004b). There is no experimental data available for perfluorobutyl formate and it is assumed to be similar to perfluoroporopyl formate.
- L67. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Oyaro et al. (2004) with an assumed *E*/R of 500 K.
- L68. Lifetime estimated in Bravo et al. (2011a).
- L69. Tropospheric OH partial lifetime calculated using the OH rate coefficient from Chen et al. (2006).
- L70. Tropospheric OH partial lifetime estimated in Christensen et al. (1998) based on comparison with Cl atom reactivity.
- L71. OH reactivity assumed to be the same as for perfluorobutyl acetate.
- L72. OH reactivity assumed to be the same as for $CF_3C(O)OCH_2CH_3$.
- L73. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Blanco and Teruel (2007) with an assumed *E*/R of 1000 K.
- L74. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Oyaro et al. (2005) with an assumed *E*/R of 1500 K.
- L75. Tropospheric OH partial lifetime calculated using the room temperature OH rate coefficient from Oyaro et al. (2004) with an assumed *E*/R of 1000 K.
- L76. Tropospheric OH partial lifetime calculated using the OH rate coefficient from Antiñolo et al. (2010).
- L77. OH rate coefficient taken from Antiñolo et al. (2011).
- L78. OH reactivity estimated by comparison with other fluoroalcohols.
- L79. OH reactivity calculated using the room temperature rate coefficient reported by Ellis et al. (2003) with an assumed *E*/R of 1000 K.
- L80. OH rate coefficient taken from Bravo et al. (2010).
- L81. OH rate coefficient taken from Antiñolo et al. (2012).
- L82. Tropospheric photolysis is the dominant loss process for perfluoroketones (Jackson et al., 2011; Taniguchi et al., 2003).
- L83. OH reactivity assumed to be similar to that of NOVEC-1230.
- L84. Lifetime primarily determined by UV photolysis with a decreasing local lifetime with increasing altitude.
- L85. Lifetime estimates taken from the 3-D model simulations of Youn et al. (2010).
- L86. Lifetime range is representative of the variation in local photolysis partial lifetime with time and location of emission.
- L87. Photolysis lifetimes taken from Mössinger et al. (1998) for CH₂Brl and Roehl et al. (1997) for CH₂Cll, CH₃CH₂l, CH₃CH₂CH₂l, CH₃CH₂CH₂l, CH₃CHICH₃.
- L88. OH reactivity assumed to be similar to that of CH_2Br_2 .
- L89. OH reactivity taken from Zhang et al. (2011).
- L90. OH reactivity taken from Zhang et al. (2012)
- L91. Photolysis and OH reactivity assumed the same as for CF₃I.
- L92. Heterogeneous processing is the predominate removal process.
- L93. Lifetime reported in Brühl et al. (2012).
- L94. Lifetimes taken from Papadimitrou et al. (2008) and Mühle et al. (2009).

ODP Footnotes

O1. See Chapter 1, Section 1.5.1.

- O2. Negligible and assigned a value of zero.
- O3. ODP taken from WMO (2014) Table 5.2.
- O4. A greater ODP value was reported from the 2-D model calculations in Davis et al. (2016): 0.95 (CFC-113), 0.78 (CFC-114), 0.44 (CFC-115), 1.01 (CFC-12), and 1.06 (CCl₄).
- O5. Taken from Montreal Protocol.
- O6. ODP taken from the 2-D model calculations in Davis et al. (2016). The semi-empirical ODP reported in Laube et al. (2014) is consistent with the latter Davis et al. (2016) value, but has a larger uncertainty range.
- O7. ODP taken from Kloss et al. (2014).
- O8. ODP taken from the 2-D model calculations in Papadimitriou et al. (2013b).
- O9. Semi-empirical ODP calculated using empirical relationship of the fractional release factor with stratospheric lifetime given in Papanastasiou et al. (2018).
- O10. Taken from Papanastasiou et al. (2018).
- O11. ODP taken from WMO (2011).
- O12. Upper-limit of ODPs of short-lived substances reported in the studies of Brioude et al. (2010) (C₂H₅Br, CH₂CBrCF₃, n-C₃H₇Br, C₂HCl₃, CCl₃CHO, CH₃I, CF₃I, C₃F₇I, CH₂CII, CHBr₃), Wuebbles and co-workers (Patten et al., 2011; Patten and Wuebbles, 2010; Wuebbles et al., 2011; Wuebbles et al., 2009; Youn et al., 2010) (C₃H₇Br, C₂HCl₃, C₂Cl₄, HFO-1233zd, (*E*)-CHCl=CHCl, CF₃I, and CH₃I), and Tegtmeier et al. (2012) (CH₂Br₂, CHBr₃). The derived ODPs in these studies were shown to be strongly dependent on the region and season of the substance emission with the greatest values obtained for emissions in the Indian subcontinent.
- O13. Taken from Langbein et al. (1999).
- O14. Value not available.
- O15. Assumed to be <0.02 for surface emission.
- O16. Assumed to be the same as for CF_3I .

RE, GWP, and GTP Footnotes

- R1. Radiative metrics taken from IPCC (2013).
- R2. RE calculated using the room temperature infrared absorption spectrum reported in the Pacific Northwest National Laboratory (PNNL) database, https://secure2.pnl.gov/nsd/nsd.nsf (Sharpe et al., 2004).
- R3. RE taken from recommendation given in Hodnebrog et al. (2013), which was based on a combination of literature review of experimental data and re-analysis.
- R4. Radiative metrics calculated using the infrared absorption spectrum reported in Davis et al. (2016) and the lifetime reported here.
- R5. Radiative metrics calculated using the infrared absorption spectrum reported in Papadimitriou et al. (2013b) and the lifetime reported here.
- R6. Radiative metrics calculated using the theoretically calculated infrared absorption spectrum in Papanastasiou et al. (2018) and lifetimes given here.
- R7. Radiative metrics calculated using the theoretically calculated infrared absorption spectrum and lifetimes reported in Papanastasiou et al. (2018).
- R8. Radiative metrics calculated using the infrared spectrum and lifetimes reported in McGillen et al. (2015).
- R9. Radiative efficiency not available.
- R10. Radiative metrics calculated using the RE reported in Le Bris et al. (2018) and the lifetime reported here.
- R11. Radiative metrics calculated using the infrared spectrum in Baasandorj and Burkholder (2016).
- R12. Radiative metrics calculated using the RE reported in Jai et al. (2013) with lifetime and stratospheric temperature corrections applied here using the lifetimes reported here.
- R13. Radiative metrics calculated using the infrared spectrum in Baasandorj et al. (2018).
- R14. Radiative metrics calculated using the infrared spectrum in Papadimitriou and Burkholder (2016).
- R15. Radiative metrics calculated using the infrared spectrum in Wallington et al. (2016).
- R16. Radiative metrics calculated using the infrared spectrum in Gierczak et al. (2014).
- R17. Radiative metrics calculated using the infrared spectrum in Orkin et al. (2017).
- R18. Infrared absorption spectrum taken from Bernard et al. (2018).
- R19. RE taken from recommendation given in Hodnebrog et al. (2013), which was based on theoretically calculated infrared absorption spectra and analysis.

Appendix A | Appendix Table A-1

- R20. Radiative metrics calculated using the RE reported in Zhang et al. (2017) and the lifetime reported here.
- R21. Assumed to be similar to NOVEC-1230.
- R22. Assumed negligible.
- R23. Assumed to be similar to that of CF_3I .

REFERENCES

- Ammann, M., R.A. Cox, J.N. Crowley, H. Herrmann, M.E. Jenkin, V.F. McNeil, A. Mellouki, M.J. Rossi, J. Troe, and T.J. Wallington, IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, 2017.
- Antiñolo, M., E. Jiménez, A. Notario, E. Martínez, and J. Albaladejo, Tropospheric photooxidation of CF₃CH₂CHO and CF₃(CH₂)₂CHO initiated by CI atoms and OH radicals, *Atmos. Chem. Phys.*, *10*, 1911–1922, doi:10.5194/acp-10-1911-2010, 2010.
- Antiñolo, M., E. Jiménez, and J. Albaladejo, Temperature effects on the removal of potential HFC replacements, CF₃CH₂CH₂OH and CF₃(CH₂)₂CH₂OH, initiated by OH radicals, *Environ. Sci. Technol.*, *45*, 4323–4330, doi:10.1021/es103931s, 2011.
- Antiñolo, M., S. González, B. Ballesteros, J. Albaladejo, and E. Jiménez, Laboratory studies of CHF₂CF₂CH₂OH and CF-₃CF₂CH₂OH: UV and IR absorption cross sections and OH rate coefficients between 263 and 358 K, *J. Phys. Chem. A*, *116*, 6041–6050, doi:10.1021/jp2111622, 2012.
- Atkinson, R., Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, *Atmos. Chem. Phys.*, *3*, 2233–2307, doi:10.5194/acp-3-2233-2003, 2003.
- Baasandorj, M., and J.B. Burkholder, Rate coefficient for the gas-phase OH + CHF=CF₂ reaction between 212 and 375 K, Int. J. Chem. Kinet., 48, 714–723, doi:10.1002/kin.21027, 2016.
- Baasandorj, M., E.L. Fleming, C.H. Jackman, and J.B. Burkholder, O(¹D) kinetic study of key ozone depleting substances and greenhouse gases, *J. Phys. Chem. A*, *117*, 2434–2445, doi:10.1021/j312781c, 2013.
- Baasandorj, M., P. Marshall, A.R. Ravishankara, and J.B. Burkholder, Rate coefficient measurements and theoretical analysis of the OH + (*E*)-CF₃CH=CHCF₃ reaction, *J. Phys. Chem. A*, *122*, doi:10.1021/acs.jpca.8b02771, 2018.
- Bernard, F., M.R. McGillen, E.L. Fleming, C.H. Jackman, and J.B. Burkholder, CBrF₃ (Halon-1301): UV absorption spectrum between 210 and 320 K, atmospheric lifetime, and ozone depletion potential, *J. Photochem. Photobio.*, 306, 13–20, doi:10.1016/j.jphotochem.2015.03.012, 2015.
- Bernard, F., D.K. Papanastasiou, V.C. Papadimitriou, and J.B. Burkholder, Infrared absorption spectra of N(C_xF_{2x+1})₃, × = 2-5 perfluoroamines, J. Quant. Spectrosc. Rad. Trans., 211, 166–171, doi:10.1016/j.jqsrt.2018.02.039, 2018.
- Blanco, M.B., and M.A. Teruel, Atmospheric degradation of fluoroesters (FESs): Gas-phase reactivity study towards OH radicals at 298 K, *Atmos. Environ.*, *41*, 7330–7338, doi:10.1016/j.atmosenv.2007.05.013, 2007.
- Blowers, P., K.F. Tetrault, and Y. Trujilo-Morehead, Global warming potential predictions for hydrofluoroethers with two carbon atoms, *Theor. Chem. Acc.*, *119*, 369–381, doi:10.1007/s00214-007-0394-3, 2008.
- Bravo, I., Y. Díaz-de-Mera, A. Aranda, K. Smith, K.P. Shine, and G. Marston, Atmospheric chemistry of C₄F₉OC₂H₅ (HFE-7200), C₄F₉OCH₃ (HFE-7100), C₃F₇OCH₃ (HFE-7000) and C₃F₇H₂OH: Temperature dependence of the kinetics of their reactions with OH radicals, atmospheric lifetimes and global warming potentials, *Phys. Chem. Chem. Phys.*, *12*, 5115–5125, doi:10.1039/b923092k, 2010.
- Bravo, I., Y. Diaz-de-Mera, A. Aranda, E. Moreno, D.R. Nutt, and G. Marston, Radiative efficiencies for fluorinated esters: indirect global warming potentials of hydrofluoroethers, *Phys. Chem. Chem. Phys.*, *13*, 17185–17193, doi:10.1039/c1cp21874c, 2011a.
- Bravo, I., G. Marston, D.R. Nutt, and K.P. Shine, Radiative efficiencies and global warming potentials using theoretically determined absorption cross-sections for several hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs), *J. Quant. Spectrosc. Rad. Trans.*, *112*, 1967–1977, doi:10.1016/j.jqsrt.2011.05.001, 2011b.

- Brioude, J., R.W. Portmann, J.S. Daniel, O.R. Cooper, G.J. Frost, K.H. Rosenlof, C. Granier, A.R. Ravishankara, S.A. Montzka, and A. Stohl, Variations in ozone depletion potentials of very short-lived substances with season and emission region, *Geophys. Res. Lett.*, *37*, L19804, doi:10.1029/2010GL044856, 2010.
- Brühl, C., J. Lelieveld, P.J. Crutzen, and H. Tost, The role of carbonyl suphide as a source of stratospheric sulphate aerosol and its impact on climate, *Atmos. Chem. Phys.*, *12*, 1239–1253, doi:10.5194/acp-12-1239-2012, 2012.
- Burkholder, J.B., S.P. Sander, J. Abbatt, J.R. Barker, R.E. Huie, C.E. Kolb, M.J. Kurylo, V.L. Orkin, D.M. Wilmouth, and P.H. Wine, *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18*, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, California, http://jpldataeval.jpl.nasa.gov., 2015.
- Butler, J.H., S.A. Yvon-Lewis, J.M. Lobert, D.B. King, S.A. Montzka, J.L. Bullister, V. Koropalov, J. Elkins, B.D. Hall, L. Hu, and Y. Liu, A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl₄) to the ocean, *Atmos. Chem. Phys.*, *16*, 10899–10910, doi:10.5194/acp-16-10899-2016, 2016.
- Chen, L., S. Kutsuna, K. Tokuhashi, and A. Sekiya, Kinetics of the gas-phase reaction of CF₃OC(O)H with OH radicals at 242–328 K, *Int. J. Chem. Kinet.*, *36*, 337–344, doi:10.1002/kin.20004, 2004a.
- Chen, L., S. Kutsuna, K. Tokuhashi, and A. Sekiya, Kinetics study of the gas-phase reactions of C₂F₅OC(O)H and *n*-C₃F₇OC(O)H with OH radicals at 253–328 K, *Chem. Phys. Lett.*, *400*, 563–568, doi:10.1016/j.cplett.2004.11.019, 2004b.
- Chen, L., S. Kutsuna, K. Tokuhashi, and A. Sekiya, Kinetics study of the gas-phase reactions of CHF₂CF₂OCHF₂ and CF₃CH-FCF₂OCH₂CF₂CF₃ with OH radicals at 253–328 K, *Chem. Phys. Lett.*, *403*, 180–184, doi:10.1016/j.cplett.2005.01.002, 2005.
- Chen, L., S. Kutsuna, K. Tokuhashi, and A. Sekiya, Kinetics and mechanisms of CF₃CHFOCH₃, CF₃CHFOC(O)H, and FC(O) OCH₃ reactions with OH radicals, *J. Phys. Chem. A*, *110*, 12845–12851, doi:10.1021/jp064917h, 2006.
- Christensen, L.K., J. Sehested, O.J. Nielsen, M. Bilde, T.J. Wallington, A. Guschin, L.T. Molina, and M.J. Molina, Atmospheric chemistry of HFE-7200 (C₄F₉OC₂H₅): Reaction with OH radicals and fate of C₄F₉OCH₂CH₂O(•) and C₄F₉O-CHO(•)CH₃ radicals, *J. Phys. Chem. A*, *102*, 4839–4845, doi:10.1021/jp981128u, 1998.
- Davis, M.E., F. Bernard, M.R. McGillen, E.L. Fleming, and J.B. Burkholder, UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl₂FCCl₂F (CFC-112), CCl₃CClF₂ (CFC-112a), and CCl₂FCF₃ (CFC-114a), *Atmos. Chem. Phys.*, *16*, 8043–8052, doi:10.5194/acp-16-8043-2016, 2016.
- DeMore, W.B., Experimental and estimated rate constants for the reactions of hydroxyl radicals with several halocarbons, J. Phys. Chem., 100, 5813–5820, doi:10.1021/jp953216%2B, 1996.
- Ellis, D.A., J.W. Martin, S.A. Mabury, M.D. Hurley, M.P. Sulbaek Andersen, and T.J. Wallington, Atmospheric lifetime of fluorotelomer alcohols, *Environ. Sci. Technol.*, *37*, 3816–3820, doi:10.1021/es034136j, 2003.
- Gieczak, T., M. Baasandorj, and J.B. Burkholder, OH + (*E*)- and (*Z*)-1-chloro-3,3,3-trifluoropropene-1 (CF₃CH=CHCl) reaction rate coefficients: Stereoisomer-dependent reactivity, *J. Phys. Chem. A*, *118*, 11,015–11,s025, doi:10.1021/ jp509127h, 2014.
- Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer, Twelfth Edition, Ozone Secretariat, Secretariat of the Vienna Convention for the Protection of the Ozone Layer and of the Montreal Protocol on Substances the Deplete the Ozone Layer, United Nations Environment Programme, Nairobi, Kenya, 2018. http:// ozone.unep.org/sites/default/files/MP_handbook-english-2018.pdf
- Hodnebrog, Ø., M. Etminan, J.S. Fuglestvedt, G. Marston, G. Myhre, C.J. Nielsen, K.P. Shine, and T.J. Wallington, Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review,

Rev. Geophys., *51*, 300–378, doi:10.1002/rog.20013, 2013.

- Hu, L., S.A. Yvon-Lewis, Y. Liu, and T.S. Bianchi, The ocean in near equilibrium with atmospheric methyl bromide, *Global Biogeochem. Cycles*, *26*, GB3016, doi:10.1029/2011GB004272, 2012.
- Hu, L., S.A. Yvon-Lewis, J.H. Butler, J.M. Lobert, and D.B. King, An improved oceanic budget for methyl chloride, J. *Geophys. Res.*, 118, 715–725, doi:10.1029/2012JC008196, 2013.
- IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 1535 pp., Cambridge University Press, Cambridge, United Kingdom, 2013.
- Jackson, D.A., C.J. Young, M.D. Hurley, T.J. Wallington, and S.A. Mabury, Atmospheric degradation of perfluoro-2-methyl-3-pentanone: Photolysis, hydrolysis and hydration, *Environ. Sci. Technol.*, *45*, 8030–8036, doi:10.1021/es104362g, 2011.
- Javadi, M.S., O.J. Nielsen, T.J. Wallington, M.D. Hurley, and J.G. Owens, Atmospheric chemistry of 2-ethoxy-3,3,4,4,5-pentafluorotetrahydro-2,5-bis[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-furan: Kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation, *Environ. Sci. Technol.*, *41*, 7389–7395, doi:10.1021/es071175c, 2007.
- Jia, X., L. Chen, J. Mizukado, S. Kutsuna, and K. Tokuhashi, Rate constants for the gas-phase reactions of cyclo-CX=CXCF₂CF₂- (X = H, F) with OH radicals at a temperature range of 253–328 K, *Chem. Phys. Lett.*, *572*, 21–25, doi:10.1016/j.cplett.2013.04.020, 2013.
- Kloss, C., M.J. Newland, D.E. Oram, P.J. Fraser, C.A.M. Brenninkmeijer, T. Röckmann, and J.C. Laube, Atmospheric abundances, trends and emissions of CFC-216ba, CFC-216ca and HCFC-225ca, *Atmos.*, *5*, 420–434, doi:10.3390/atmos5020420, 2014.
- Ko, M.K.W., P.A. Newman, S. Reimann, S.E. Strahan, R.A. Plumb, R.S. Stolarski, J.B. Burkholder, W. Mellouki, A. Engel, E.L. Atlas, M. Chipperfield, and Q. Liang, Lifetimes of stratospheric ozone-depleting substances, their replacements, and related species, SPARC Report No. 6, WCRP-15/2013, 2013.
- Langbein, T., H. Sonntag, D. Trapp, A. Hoffmann, W. Malms, E.-P. Röth, V. Mörs, and R. Zellner, Volatile anaesthetics and the atmosphere: Atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane, *Br. J. Anaesth.*, *82*, 66–73, doi:10.1093/bja/82.1.66, 1999.
- Laube, J.C., M.J. Newland, C. Hogan, C.A.M. Brenninkmeijer, P.J. Fraser, P. Martinerie, D.E. Oram, C.E. Reeves, T. Röckmann, J. Schwander, E. Witrant, and W.T. Sturges, Newly detected ozone-depleting substances in the atmosphere, *Nat. Geosci.*, 7, 266–269, doi:10.1038/ngeo2109, 2014.
- Le Bris, K., J. DeZeeuw, P.J. Godin, and K. Strong, Infrared absorption cross-sections, radiative efficiency and global warming potential of HFC-43-10mee, *J. Mol. Spectrosc.*, *348*, 64–67, doi:10.1016/j.jms.2017.06.004, 2018.
- Le Calve, S., G. Le Bras, and A. Mellouki, Temperature dependence for the rate coefficients of the reactions of the OH radical with a series of formates, *J. Phys. Chem. A*, *101*, 5489–5493, doi:.1021/jp970554x, 1997.
- Mashino, M., Y. Ninomiya, M. Kawasaki, T.J. Wallington, and M.D. Hurley, Atmospheric chemistry of CF₃CF=CF₂: Kinetics and mechanism of its reactions with OH radicals, Cl atoms, and ozone, *J. Phys. Chem. A*, 104, 7255–7260, doi:10.1021/jp000498r, 2000.
- McGillen, M.R., F. Bernard, E.L. Fleming, and J.B. Burkholder, HCFC-133a (CF₃CH₂Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications, *Geophys. Res. Lett.*, *42*, 6098–6105, doi:10.1002/2015GL064939, 2015.
- Mössinger, J.C., D.E. Shallcross, and R.A. Cox, UV-VIS absorption cross-sections and atmospheric lifetimes of CH₂Br₂, CH₂I₂ and CH₂BrI, *J. Chem. Soc. Faraday Trans.*, *94*, 1391–1396, doi:10.1039/A709160E, 1998.
- Mühle, J., J. Huang, R.F. Weiss, R.G. Prinn, B.R. Miller, P.K. Salameh, C.M. Harth, P.J. Fraser, L.W. Porter, B.R. Greally, S.

O'Doherty, and P.G. Simonds, Sulfuryl fluoride in the global atmosphere, *J. Geophys. Res.*, *114*, D05306, doi:10.1029/2008JD011162, 2009.

- Orkin, V.L., V.G. Khamaganov, E.E. Kasimovskaya, and A.G. Guschin, Photochemical properties of some Cl containing halogenated alkanes, *J. Phys. Chem. A*, *117*, 5483–5490, doi:10.1021/jp400408y, 2013.
- Orkin, V.L., L.E. Martynova, and M.J. Kurylo, Photochemical properties of CH₂=CH-CFCI-CF₂Br (4-bromo-3-chloro-3,4,4-trifluoro-1-butene) and CH₃-O-CH(CF₃)₂ (Methyl Hexafluoroisopropyl Ether): OH reaction rate constants and UV and IR absorption spectra, *J. Phys. Chem. A*, *121* (30), 5675–5680, doi:10.1021/acs.jpca.7b04256, 2017.
- Oyaro, N., S.R. Sellevåg, and C.J. Nielsen, Study of the OH and Cl-initiated oxidation, IR absorption cross-section, radiative forcing, and global warming potential of four C₄-hydrofluoroethers, *Environ. Sci. Technol.*, *38*, 5567–5576, doi:10.1021/es0497330, 2004.
- Oyaro, N., S.R. Sellevåg, and C.J. Nielsen, Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials, *J. Phys. Chem. A*, *109*, 337–346, doi:10.1021/jp047860c, 2005.
- Papadimitriou, V.C., and J.B. Burkholder, OH radical reaction rate coefficients, infrared spectrum, and global warming potential of (CF₃)₂CFCH=CHF (HFO-1438ezy(*E*)), *J. Phys. Chem. A*, *120*, 6618–6628, doi:10.1021/acs.jpca.6b06096, 2016.
- Papadimitriou, V.C., R.W. Portmann, D.W. Fahey, J. Mühle, R.F. Weiss, and J.B. Burkholder, Experimental and theoretical study of the atmospheric chemistry and global warming potential of SO₂F₂, *J. Phys. Chem. A*, *112*, 12657–12666, doi/abs/10.1021/jp806368u, 2008.
- Papadimitriou, V.C., M.R. McGillen, E.L. Fleming, C.H. Jackman, and J.B. Burkholder, NF₃: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications, *Geophys. Res. Lett.*, 40, 1–6, doi:10.1002/grl.50120, 2013a.
- Papadimitriou, V.C., M.R. McGillen, S.C. Smith, A.M. Jubb, R.W. Portmann, B.D. Hall, E.L. Fleming, C.H. Jackman, and J.B. Burkholder, 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C₄F₆Cl₂, R-316c) a potent ozone depleting substance and greenhouse gas: Atmospheric loss processes, lifetimes, and ozone depletion and global warming potentials for the (*E*) and (*Z*) stereoisomers, *J. Phys. Chem. A*, *117*, 11,049–11,065, doi:10.1021/jp407823k, 2013b.
- Papanastasiou, D.K., N. Rontu Carlon, J.A. Neuman, E.L. Fleming, C.H. Jackman, and J.B. Burkholder, Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone-depleting substances CF₂Br₂, CF₂ClBr, and CF₂BrCF₂Br, *Geophys. Res. Lett.*, 40, doi:10.1002/GRL.50121, 2013.
- Papanastasiou, D.K., S.A. McKeen, and J.B. Burkholder, The very short-lived ozone depleting substance CHBr₃ (bromoform): Revised UV absorption spectrum, atmospheric lifetime and ozone depletion potential, *Atmos. Chem. Phys.*, *14*, 3017–3025, doi: 10.5194/acpd-13-32963-2013, 2014.
- Papanastasiou, D.K., A. Beltrone, P. Marshall, and J.B. Burkholder, Global warming potential estimates for C₁-C₃ hydrochlorofluorocarbons (HCFCs) included in the Kigali amendment to the Montreal Protocol, *Atmos. Chem. Phys.*, *18*, 6317–6330, doi:10.5194/acp-18-6317-2018, 2018.
- Patten, K.O., and D.J. Wuebbles, Atmospheric lifetimes and Ozone Depletion Potentials of trans-1-chloro-3,3,3trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model, *Atmos. Chem. Phys.*, *10*, 10867– 10874, doi:10.5194/acp-10-10867-2010, 2010.
- Patten, K.O., V.G. Khamaganov, V.L. Orkin, S.L. Baughcum, and D.J. Wuebbles, OH reaction rate constant, IR absorption spectrum, ozone depletion potentials and global warming potentials of 2-bromo-3,3,3-trifluoropropene, *J. Geophys. Res.*, *116*, D24307, doi:10.1029/2011JD016518, 2011.
- Prinn, R.G., J. Huang, R.F. Weiss, D.M. Cunnold, P.J. Fraser, P.G. Simmonds, A. McCulloch, C. Harth, S. Reimann, P. Salameh, S. O'Doherty, R.H.J. Wang, L.W. Porter, B.R. Miller, and P.B. Krummel, Evidence for variability of atmospheric hydroxyl radicals over the past quarter century, *Geophys. Res. Lett.*, *32*, L07809, doi:10.1029/2004GL022228, 2005.

- Ravishankara, A.R., S. Solomon, A.A. Turnipseed, and R.F. Warren, Atmospheric lifetimes of long-lived halogenated species, *Science*, 259, 194–199, doi:10.1126/science.259.5092.194, 1993.
- Rhew, R.C., and J.D. Happell, The atmospheric partial lifetime of carbon tetrachloride with respect to the global soil sink, *Geophys. Res. Lett.*, 43, 2889–2895, doi:10.1002/2016GL067839, 2016.
- Roehl, C.M., J.B. Burkholder, G.K. Moortgat, A.R. Ravishankara, and P.J. Crutzen, Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides, *J. Geophys. Res.*, *102*, 12,819–12,829, doi:10.1029/97JD00530, 1997.
- Sharpe, S.W., T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, and P.A. Johnson, Gas-phase databases for quantitative infrared spectroscopy, *Appl. Spectrosc.*, *58*, 1452–1461, doi:10.1366/0003702042641281, 2004.
- SPARC, Report on the Mystery of Carbon tetrachloride, edited by Q. Liang, P.A. Newman, and S. Reimann, SPARC Report No. 7, WCRP-13/2016, 2016.
- Sulbaek Andersen, M.P., M.D. Hurley, T.J. Wallington, F. Blandini, N.R. Jensen, V. Librando, J. Hjorth, G. Marchionni, M. Avataneo, M. Visca, F.M. Nicolaisen, and O.J. Nielsen, Atmospheric chemistry of CH₃O(CF₂CF₂O)_nCH₃ (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warming potentials, J. Phys. Chem. A, 108, 1964–1972, doi:10.1021/jp036615a, 2004.
- Sulbaek Andersen, M.P., O.J. Nielsen, A. Toft, T. Nakayama, Y. Matsumi, R.L. Waterland, R.C. Buck, M.D. Hurley, and T.J. Wallington, Atmospheric chemistry of C_xF_{2x+1}CH=CH₂ (x=1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O₃, *J. Photochem. Photobio.*, *176*, 124–128, doi:10.1016/j.jphotochem.2005.06.015, 2005.
- Takahashi, K., T. Nakayama, Y. Matsumi, S. Solomon, T. Gejo, E. Shigemasa, and T.J. Wallington, Atmospheric lifetime of SF₅CF₃, *Geophys. Res. Lett.*, *29*, doi:10.1029/2002GL015356, 2002.
- Taniguchi, N., T.J. Wallington, M.D. Hurley, A.G. Guschin, L.T. Molina, and M.J. Molina, Atmospheric chemistry of C₂F-₅C(O)CF(CF₃)₂: Photolysis and reaction with Cl atoms, OH radicals, and ozone, *J. Phys. Chem. A*, 107, 2674–2679, doi:10.1021/jp0220332, 2003.
- Tegtmeier, S., K. Krüger, B. Quack, E.L. Atlas, I. Pisso, A. Stohl, and X. Yang, Emission and transport of bromocarbons: From the West Pacific ocean into the stratosphere, *Atmos. Chem. Phys.*, *12*, 10,633–10,648, doi:10.5194/acp-12-10633-2012, 2012.
- Tokuhashi, K., A. Takahashi, M. Kaise, and S. Kondo, Rate constants for the reactions of OH radials with CH₃OCF₂CHFCl, CHF₂OCF₂CHFCl, CHF₂OCF₂CHFCl, CHF₂OCHClCF₃, and CH₃CH₂OCF₂CHF₂, *J. Geophys. Res.*, *104*, 18,681–18,688, doi:10.1029/ 1999JD900278, 1999.
- UNEP (United Nations Environment Programme), Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer, Ozone Secretariat, Vienna Convention for the Protection of the Ozone Layer and the Montreal Protocol on Substances that Deplete the Ozone Layer, 895 pp., Nairobi, Kenya, 2018.
- Urata, S., A. Takada, T. Uchimaru, and A.K. Chandra, Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals, *Chem. Phys. Lett.*, *368*, 215–223, 2003.
- Wallington, T.J., M.D. Hurley, J.C. Ball, A.M. Straccia, J. Platz, L.K. Christensen, J. Sehested, and O.J. Nielsen, Atmospheric chemistry of dimethoxymethane (CH₃OCH₂OCH₃): Kinetics and mechanism of its reaction with OH radicals and fate of the alkoxy radicals CH₃OCHO(•)OCH₃ and CH₃OCH₂OCH₂O(•), *J. Phys. Chem. A*, *101*, 5302–5308, doi:10.1021/jp9631184, 1997.
- Wallington, T.J., M.D. Hurley, O.J. Nielsen, and M.P. Sulbaek Andersen, Atmospheric chemistry of CF₃CFHCF₂OCF₃ and CF₃CFHCF₂OCF₂H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials, *J. Phys. Chem. A*, *108*, 11,333–11,338, doi:10.1021/jp046454q, 2004.
- Wallington, T.J., B.P. Pivesso, A.M. Lira, J.E. Anderson, C.J. Nielsen, N.H. Andersen, and Ø. Hodnebrog, CH₃Cl, CH₂Cl₂, CHCl₃, and CCl₄: Infrared spectra, radiative efficiencies, and global warming potentials, *J. Quant. Spectrosc. Rad. Trans.*, *174*, 56–64, doi:10.1016/j.jqsrt.2016.01.029, 2016.

- WMO (World Meteorological Organization), *Scientific Assessment of Ozone Depletion: 2014*, Global Ozone Research and Monitoring Project–Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
- Wuebbles, D.J., D. Youn, K. Patten, D. Wang, and M. Martinez-Aviles., Metrics for ozone and climate: Threedimensional modeling studies of ozone depletion potentials and indirect global warming potentials, in Twenty Years of Ozone Decline, in *Proceedings of the Symposium for the 20th Anniversary of the Montreal Protocol*; edited by C. Zerefos, G. Contopoulos, and G. Skalkeas, 297–326, Springer, Netherlands, 2009.
- Wuebbles, D.J., K.O. Patten, D. Wang, D. Youn, M. Martínez-Avilés, and J.S. Francisco, Three-dimensional model evaluation of the ozone depletion potentials for n-propyl bromide, trichloroethylene and perchloroethylene, *Atmos. Chem. Phys.*, *11*, 2371–2380, doi:10.5194/acp-11-2371-2011, 2011.
- Youn, D., K.O. Patten, D.J. Wuebbles, H. Lee, and C.-W. So, Potential impact of iodinated replacement compounds CF₃I and CH₃I on atmospheric ozone: A three-dimensional modeling study, *Atmos. Chem. Phys.*, *10*, 10,129–10,144, doi:10.5194/acp-10-10129-2010, 2010.
- Young, C.J., M.D. Hurley, T.J. Wallington, and S.A. Mabury, Atmospheric lifetime and global warming potential of a perfluoropolyether, *Environ. Sci. Technol.*, *40*, 2242–2246, doi:10.1021/es052077z, 2006.
- Young, C.J., M.D. Hurley, T.J. Wallington, and S.A. Mabury, Atmospheric chemistry of CF₃CF₂H and CF₃CF₂CF₂CF₂H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids, *Chem. Phys. Lett.*, *473*, 251–256, doi:10.1016/j.cplett.2009.04.001, 2009a.
- Young, C.J., M.D. Hurley, T.J. Wallington, and S.A. Mabury, Atmospheric chemistry of perfluorobutenes (CF₃CF=CFCF₃ and CF₃CF₂CF=CF₂): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids, *Atmos. Environ.*, *43*, 3717–3724, doi:10.1016/j. atmosenv.2009.04.025, 2009b.
- Yvon-Lewis, S.A., and J.H. Butler, Effect of oceanic uptake on atmospheric lifetimes of selected trace gases, *J. Geophys. Res.*, *107* (D20), doi:10.1029/2001JD001267, 2002.
- Zhang, N., T. Uchimaru, Q. Guo, F. Qing, L. Chen, and J. Mizukado, Atmospheric chemistry of perfluorocyclopentene (cyc-CF₂CF₂CF₂CF₂CF=CF-): Kinetics, products and mechanism of gas-phase reactions with OH radicals, and atmospheric implications, *Atmos. Environ.*, *160*, 46–54, doi:10.1016/j.atmosenv.2017.04.012, 2017.
- Zhang, S., R. Strekowski, L. Bosland, A. Monod, and C. Zetzsch, Kinetic study of the reaction of OH with CH₂I₂, *Phys. Chem. Chem. Phys.*, *13*, 11,671–11,677, doi:10.1039/c1cp20885c, 2011.
- Zhang, S., R. Strekowski, A. Monod, L. Bosland, and C. Zetzsch, Temperature-dependent kinetics study of the reactions of OH with C₂H₅I, *n*-C₃H₇I, and iso-C₃H₇I, *J. Phys. Chem. A*, *116*, 9497–9506, doi:10.1021/jp300575f, 2012.