

Vertical and quasi-isentropic transport pathways through the Asian monsoon anticyclonic circulation into the lowermost stratosphere

Asian monsoon anticyclone (AMA)

Transport pathways from AMA into the lower stratosphere?

Randel et al., Science, 2010

- Randel et al., Science, 2010
- Bourassa et al., Science 2012

....

Overview

- Contribution of different source regions to the composition of Asian monsoon
- Entry into the stratosphere
 - The role of the tropical tropopause
 - Intermittent convective events
 - Uplift in Typhoons
- Horizontal, quasi-isentropic transport from the monsoon to mid-latitudes

CLaMS simulation for Asian monsoon season 2012

CLaMS = Chemical Lagrangian Model of the Stratosphere

- 3-D global CLaMS simulation (May - Oct. 2012)
- driven by ERA-Interim
- 100 km horizontal resolution / max. vertical resolution at tropopause ≈ 400 m
- with full stratospheric chemistry

 with artificial emission tracers representing different boundary layer source regions: e.g. North India, South India, East China, Southeast Asia (see Vogel et al., ACPD, 2015)

Emission Tracer for India/China

2 Aug 2012 at 380 K (\approx 16 km)

white line: PV = 4.5 PVU (Ploeger et al., ACPD, 2015)

- good pattern correlations between emission tracer India/China and PV r(t)= -0.71 - -0.87 (July - Sep)
- emission tracer for India/China is a good proxy for location and shape of the anticyclone

CLaMS vs. MLS satellite measurements

8 August 2012 at 380 K

- similar patterns are found in MLS
 CO and O₃ measurements
- good pattern correlation for 360-400K India/China to MLS(CO): r(t)=0.6 - 0.8 (July - Sep)

Impact of different emission tracers to the AMA

→ strong intraseasonal variability of emission tracers for North India and Southeast Asia

Temporal evolution of different emission tracers

within the Asian monsoon anticyclone at 380 K

Southeast Asia North India South India East China tropical Pacific Ocean

Emission tracer for North India

 $15-50^{\circ}$ N, $0-140^{\circ}$ E, 380 K \pm 0.5 K PV < 4.5 PVU (white line); Ploeger et al..2015, submitted to ACP

Vogel et al., 2015, ACPD

- strong intraseasonal variability: South-North shift
- highest contributions from North India and Southeast Asia
- emissions from other land masses are of minor importance
- composition of AMA is a fingerprint of variation in convective processes

Temporal evolution of different emission tracers

within the Asian monsoon anticyclone at 380 K

Southeast Asia North India South India East China tropical Pacific Ocean

Different emission tracers

Vogel et al., 2015, ACPD

- strong intraseasonal variability: South-North shift
- highest contributions from North India and Southeast Asia
- emissions from other land masses are of minor importance
- composition of AMA is a fingerprint of variation in convective processes

Sum of all emission tracer within the AMA

Contributions from the free troposphere and stratosphere

Gateways for stratospheric entry?

tropopause is vertical transport barrier

Vertical cross-section bases on levels of potential temperature

Emission tracer for India/China at 80°E on 20 Sep. 2012

Entry into the Anticyclone by single convection events?

Convection event on 10 June 2012

Part II: Trajectory Calculations

TACTS/ESMVal aircraft campaign in Aug/Sep 2012

TACTS = Transport and Composition in the Upper Troposphere and Lowermost Stratosphere ESMVal = Earth System Model Validation

with German High Altitude and Long Range Aircraft HALO

The Asian monsoon anticyclone affects the chemical composition of the lowermost stratosphere over Northern Europe in Aug/Sep 2012

Open questions:

- possible transport pathways?
- transports times?

key study: TACTS flight on 26 Sep 2012

ACAM 8-10 June 2015 R. Müller and B. Vogel 9 | 18

TACTS Flight 26 September 2012

- region of interest
- in the stratosphere at 370 K – 380 K
- enhanced CO, CH₄, H₂O
- reduced O₃
- 40-day backward trajectories

40-day backward trajectories

classification of backward trajectories according to the potential temperature at the origin of the air parcels

within the region of interest (grey box): 432 trajectories \rightarrow spaghetti!

40 days backward trajectories: 1st level

air mass origin: 295 K $<\Theta_{\rm org}<$ 320 K (\approx boundary layer)

- air masses are affected by the Asian monsoon anticyclone
- clockwise circulation around the core of the AMA (upward spiral)
- separation from AMA \approx 8 14 days before flight (26.09.12)

40 days backward trajectories: 1st level

air mass origin: 295 K $< \Theta_{\rm org} <$ 320 K (\approx boundary layer)

- air masses are affected by the Asian monsoon anticyclone
- clockwise circulation around the core of the AMA (upward spiral)
- separation from AMA $\approx 8-14$ days before flight (26.09.12)
- origin of air masses: Southeast Asia / boundary layer
- very rapid uplift up to 41 K/day (= 523 hPa/day)

Very rapid uplift in typhoons

Typhoon Tembin and Bolaven on 24 August 2012 category 4: Saffir–Simpson hurricane wind scale

geopotential height [m] at 500 hPa (color) mean sea level pressure [hPa] (blue lines)

vertical velocity (ω) [hPa/s] (color) at 23° N horizontal winds [m/s] (white lines)

- \rightarrow Very rapid uplift at the eastern flank of typhoon Bolaven (\approx 135° E)
- \rightarrow and at the western flank of typhoon Tembin (\approx 118° E)

Separation of air masses from the Asian monsoon anticyclone

- separation of filaments at the northeastern flank of the Asian monsoon along the subtropical jet
- eastward eddy shedding on 20 September 2012
- transport of tropospheric air with low PV (water vapor, pollutants,...) to Pacific Ocean

40 days backward trajectories: 2nd level

air mass origin: 320 K $< \Theta_{\rm org} <$ 360 K (free troposphere)

- separation from AM \approx 8 14 days before flight (26.09.12) at the northeast flank of the AMA
- clockwise upward circulation around the core of the AM
- origin of air masses: mainly West Pacific / troposphere
- rapid uplift up to 13 K/day (= 139 hPa/day)

- 295-320 K: very rapid uplift (2%) boundary layer
 Southeast Asia
- 320-360 K: rapid uplift (3%) troposphere mainly West Pacific
- 360-370 K: moderately rapid uplift (12%)
 AM anticyclone mainly South Asia / North Africa
- 370-380 K: moderate uplift (22%) UTLS edge of AMA
- 380-420 K: mainly decent (61%) lower stratosphere northern hemisphere

- 295-320 K: very rapid uplift (2%) boundary layer
 Southeast Asia
- 320-360 K: rapid uplift (3%) troposphere mainly West Pacific
- 360-370 K: moderately rapid uplift (12%)
 AM anticyclone mainly South Asia / North Africa
- 370-380 K: moderate uplift (22%) UTLS edge of AMA
- 380-420 K: mainly decent (61%) lower stratosphere northern hemisphere

- 295-320 K: very rapid uplift (2%) boundary layer
 Southeast Asia
- 320-360 K: rapid uplift (3%) troposphere mainly West Pacific
- 360-370 K: moderately rapid uplift (12%)
 AM anticyclone mainly South Asia / North Africa
- 370-380 K: moderate uplift (22%) UTLS edge of AMA
- 380-420 K: mainly decent (61%) lower stratosphere northern hemisphere

- 295-320 K: very rapid uplift (2%) boundary layer
 Southeast Asia
- 320-360 K: rapid uplift (3%) troposphere mainly West Pacific
- 360-370 K: moderately rapid uplift (12%)
 AM anticyclone mainly South Asia / North Africa
- 370-380 K: moderate uplift (22%) UTLS edge of AMA
 - 380-420 K: mainly decent (61%) lower stratosphere northern hemisphere

- 295-320 K: very rapid uplift (2%) boundary layer
 Southeast Asia
- 320-360 K: rapid uplift (3%) troposphere mainly West Pacific
- 360-370 K: moderately rapid uplift (12%)
 AM anticyclone mainly South Asia / North Africa
- u 370-380 K: moderate uplift (22%)
 UTLS
 edge of AMA
- 380-420 K: mainly decent (61%) lower stratosphere northern hemisphere

Summary

- The Asian monsoon anticyclone 2012 is highly variable in location and shape
- The contributions of different boundary source regions to the composition of the Asian monsoon anticyclone strongly depends on its intraseasonal variability (fingerprint of convective areas)
- Highest contributions are from North India and Southeast Asia (minor from East China and South India)

Summary (cont.)

- The thermal tropopause above the Asian monsoon anticyclone is a vertical transport barrier
- Intermittent vertical transport in the monsoon
- A novel transport pathway: Rapid uplift in a typhoon
- Air parcels circulate clockwise and upward around the anticyclone
- Subsequent long-range quasi-isentropic transport of air from the anticyclone to Northern Europe (8 to 14 days) by eastward eddy shedding

Outlook: StratoClim aircraft campaign (Geophysica) in Asia in summer 2016

References

- Vogel, B., et al., Fast transport from Southeast Asia boundary layer sources to northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone, *Atmos. Chem. Phys.*, 2014.
- Vogel, B., et al., Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and on the extratropical lowermost stratosphere, Atmos. Chem. Phys. Discuss., 2015.
- Ploeger, F., et al., A PV-based determination of the transport barrier in the Asian summer monsoon anticyclone, Atmos. Chem. Phys. Discuss., 2015.

Conclusions

- CLaMS features a unique Lagrangian mixing scheme
- CLaMS is particularly suited for simulating transport barriers and fine scale structures.
- Simulating vertical transport in the tropopause region accurately is an issue.
- The Asian Monsoon circulation is a unique region on Earth regarding Stratosphere-Troposphere exchange.
- There are many open questions regarding transport and chemistry in the Asian Monsoon region.

Variation of the position of the Anticyclone

- early-phase to mid-phase: North-south shift of the anticyclone
- late-phase: broadening of the Anticyclone

Variability of the Asian Monsoon Anticyclone

Emission tracer for India/China at 380 K (≈ 16 km)

strong variability in location and shape of the anticyclone

The Asian Monsoon Anticyclone in Sep. 2012

Emission tracer for India/China

additional material I

40-day backward trajectories: upper levels

Origin:

- 360-370 K: AM anticyclone mainly South Asia / North Africa
- 370-380 K: UTLS / edge of AMA
- 380-420 K: lower stratosphere northern hemisphere