# Susceptibility of TTL cirrus to heterogeneous nuclei

Eric Jensen, Rei Ueyama, and Leonhard Pfister

- How do TTL water vapor concentration, relative humidity, cirrus microphysical properties, and cirrus occurrence frequencies change if the abundance of heterogeneous ice nuclei changes?
- Ueyama et al., "Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer", JGR, in review. See poster.
- Motivation: Heterogeneous IN changes → climate change

#### Data sources:

- ATTREX clouds (S. Woods, P. Lawson)
- ATTREX water, temp. (G. Diskin, J. DiGangi, T. Thornberry, A. Rollins, P. Bui)
- CALIOP clouds (M. Avery)

# Homogeneous vs heterogeneous ice nucleation

#### Homogeneous freezing of aqueous aerosols

- General assumption is that most aerosols are aqueous sulfates (with other stuff)
- Freezing occurs at  $S_{ice} \approx 1.6-1.7$  (*RHI* = 160–170%)
- Freezing threshold is apparently composition independent, but small variations matter
- Always plenty of aerosols ( $N_{qer} = 10-10,000 \text{ cm}^{-3}$ ,  $N_{ice} < 1 \text{ cm}^{-3}$ )

#### Heterogeneous nucleation on solid particles

- Heterogeneous freezing on insoluble components in aqueous aerosols
- Deposition nucleation on dry particles
- Occurs at lower supersaturations ( $S_{ice}$  ≈ 1.1–1.6)
- Limited population of heterogeneous ice nuclei (IN,  $N_{IN}$  < 100 L<sup>-1</sup> (typically, no direct measurements in TTL))

#### Potential TTL IN

- Mineral dust
- Metallic particles
- Efflouresced ammonium sulfate
- Glassy organic-containing aerosols

IN potentially changing as a result of invasive humans

# Hawkeye TTL cirrus measurements: ice concentration



Reasonable consistency between different measurements of ice concentration

# Hawkeye/CALIOP TTL cirrus measurements: extinction



- 2D-S (direct extinction measurement) has larger values than CALIOP (sampling bias?)
- Relatively small regional and interannual differences

# ATTREX relative humidity measurements



- Diode Laser Hygrometer (DLH): Openpath TDL [G. Diskin]
- NOAA Water (NW): Internal-path TDL, vapor and total H<sub>2</sub>O [T. Thornberry, A. Rollins]



- Excellent agreement between measurements
- Peak near RHI = 100% physically expected

# TTL cirrus modeling approach

1. Calculate 60-day backward diabatic trajectories from every 2° lat x 2° lon grid points in the tropics (20°S - 20°N) at 372 K (~100 hPa) level ending at 1 Feb 2007 using ERA-Interim temperatures and winds with enhanced wave-driven variability [Kim and Alexander 2013] and high-frequency waves added





ERAi tropopause temperature bias < 0.3 K</li>

# TTL cirrus modeling approach

2. Use 1D (height) time-dependent microphysical model to simulate clouds along each parcel trajectory temperature curtain.





Sedimentation is important for realistic simulation of ice concentrations

# Trajectories are traced through geostationary satellite convective cloud-top height fields



The model vertical column is saturated up to cloud top at intersections with convective clouds

#### TTL temperature variability (cooling rates)



- High-frequency waves (< 2 cycles per day) produce rapid cooling events that result in large ice concentrations
- Need to evaluate with measurements (aircraft, balloon, etc.)





 Homogeneous freezing with nominal wave specification produces excessive ice concentrations



- Homogeneous freezing with nominal wave specification produces excessive ice concentrations
- Strong sensitivity to high-frequency waves



- Homogeneous freezing with nominal wave specification produces excessive ice concentrations
- Strong sensitivity to high-frequency waves



Extinctions are too low without waves

## Sensitivity of supersaturation to waves



- Homfrez only with waves → too many ice crystals → too little supersaturation
- No waves → too few ice crystals → too much supersaturation

## Impact of waves on cloud frequencies



- Model with high-frequency waves does a reasonable job of simulating cloud frequencies
- Without waves, too few clouds
  - Primarily due to added temperature variability with waves [Kim and Alexander, GRL, 2015]

## Impact of waves on cloud distributions



 Model (with waves) produces reasonable distribution of upper TTL cirrus, except for the south Pacific (ERA-Interim problem?)









Abundant IN improve model agreement with measured ice concentrations



Abundant IN improve model agreement with measured ice concentrations



 Extinctions are less sensitive to heterogeneous nuclei (10–30% changes with increasing IN)

#### Sensitivity of supersaturation to heterogeneous nuclei



• With abundant IN, large supersaturations rarely occur

# Impact of heterogeneous nuclei on cloud frequencies



• Cloud frequencies (and regional distributions) are insensitive to heterogeneous nuclei

# Summary

- Dynamics, particularly high-frequency waves, have a large impact on TTL cirrus microphysical properties (via nucleation sensitivity to cooling rate) and occurrence frequency (via impact on minimum temperatures [Kim and Alexander, 2015]).
  - High-freq waves are required to explain extinctions and occurrence frequencies
  - TTL supersaturation sensitive to waves and cirrus ice concentrations
- With homogeneous freezing alone, model produces excessive ice concentrations
  - Composition dependence and high-frequency waves may reduce ice concentrations produced by homogeneous freezing
- Inclusion of heterogeneous ice nuclei improves agreement with measured ice concentrations and extinctions
  - Observed frequencies of large ice supersaturations and very high ice concentrations imply that effective IN do not dominate ice nucleation all of the time
- TTL cirrus extinctions and ice water contents are relatively insensitive to heterogeneous nuclei abundance
- Heterogeneous nuclei have very little impact on TTL cirrus occurrence frequencies

# Geoengineering by seeding cirrus with effective ice nuclei

- Mitchell, D. L. and W. Finnegan, "Modification of cirrus clouds to reduce global warming", *ERL*, 2009.
  - Introduction of heterogeneous nuclei into upper troposphere will solve climate problem
- Kuebbeler, M., U. Lohmann, J. Feichter, "Effects of stratospheric sulfate aerosol geo-engineering on cirrus", *GRL*, 2012.
  - Cirrus modification side effects of stratospheric sulfate aerosol geo-engineering
  - Global model with parameterized cirrus used to estimate radiative forcings
- Cirisan, A., P. Spichtinger, B. P. Luo, D. K. Weisenstein, H. Wernli, U. Lohmann, T. Peter, "Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere", *JGR*, 2013.
  - Cirrus modification side effects of stratospheric sulfate aerosol geo-engineering
  - Trajectory aerosol simulations and cirrus box model used to provide radiative forcing estimates (?!?)
- Storelvmo, T., J. E. Kristjansson, H. Muri, M. Pfeffer, D. Barahona, A. Nenes, "Cirrus cloud seeding has potential to cool climate", *GRL*, 2013.
  - GCM with parameterized cirrus used to predict radiative forcing
  - Potential negative effects noted

# Importance of sedimentation



Parcel models will overestimate ice concentrations

# Expectations from parcel models: sensitivity to cooling rate



 Ice concentration (just after nucleation) increases rapidly with cooling rate

#### Expectations from parcel models: impact of het. ice nuclei



 Ice crystals nucleated on IN quench rising supersaturation, prevent homogeneous freezing, and limit ice concentration

#### Hawkeye/NOAA-WV TTL cirrus measurements: ice water content



• Ice mass from 2D-S requires area-mass relationships

#### **Uncertainties**

- Trajectory curtain approach: parcel pathway (and temperature variability) only correct for parcel along single trajectory (run from 372 K); no wind shear effects on cloud evolution
- Monthly-mean heating rates used despite large variations in actual heating rates associated with clouds
- High-frequency waves are specified with a statistical parameterization independent of latitude, longitude, and time
- No horizontal mixing included
- No interaction between cloud radiative heating, dynamics, and cloud processes
- Data sampling biases (how representative is the 30+ hour ATTREX-Guam Hawkeye dataset?)