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Processes occurring within the Tropical Tropopause Layer

What processes control
the humidity of air
entering the stratosphere?

What are the formation
processes, microphysical
properties, and climate
impact of TTL cirrus, and
how do these clouds
regulate the humidity of

air entering the
stratosphere?



How efficient is dehydration in TTL?

Complete efficiency would imply that the stratospheric entry WV is equal to
100% RH, at Lagrangian dry point (LDP = lowest saturation mixing ratio
encountered on path to stratosphere).
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How efficient is dehydration in TTL?

Complete efficiency would imply that the stratospheric entry WV is equal to
100% RH, at Lagrangian dry point (LDP = lowest saturation mixing ratio
encountered on path to stratosphere).
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How efficient is dehydration in TTL?

Complete efficiency would imply that the stratospheric entry WV is equal to
100% RH, at Lagrangian dry point (LDP = lowest saturation mixing ratio
encountered on path to stratosphere).
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How efficient is dehydration in TTL?

Complete efficiency would imply that the stratospheric entry WV is equal to
100% RH. at Lagrangian dry point (LDP = lowest saturation mixing ratio
encountered on path to stratosphere).
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ATTREX Deployments 2013 & 2014

Latitude (°N)
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» Use data to statistically understand/parameterize
dehydration efficiency

Photos courtesy of D. rateIIo
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ATTREX Sampling Histograms
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Comparison of 2013 and 2014
from GH sampling perspective

2013: > 74 hours in the TTL
2014: > 108 hours in the TTL

Combined > 34 hours sampling
TTL cirrus (mostly in 2014)

Limited sampling in either year
at temperatures < 186 K
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Cloud fraction

ATTREX cloud sampling
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Define cloud using both cloud
probe and NW IWC measures

Sampled cloud fractions similar
to satellite climatology
(CALIOP)

Particularly high cloud fraction
observed at lowest sampled
temperatures



Clear-sky RH; (%)

Clear-sky RH, . vs T

Koop et al. (Nature 2000)
Homogeneous freezing threshold
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In-cloud RH; (%)

In-cloud RHvs T
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Cirrus Cloud Particle Size Distributions
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Dominant fraction of TTL cirrus particles < 15 um

Distribution smaller at lower temperature

Mass also concentrated in small sizes (< 35 um)

>

Implications for dehydration
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Cirrus Particle Concentrations

—— 2DS (T < 190 K)
—— Cumulative

10"

10°

10’

#/L

10°

10°

10*

90% of cirrus observations
have N < 100 L1

Less than 0.05% have
N > 1000 L1



Supersaturation Quenching Time
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How efficiently is ice removed?
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Inefficiency of Dehydration in the TTL

» Significant supersaturations observed
inside and outside of clouds, in
agreement with our expectations.
Supersaturated frequencies increase
with decreasing T.

» |ce settling efficiency decreases
significantly below IWC ~ 3 ppm,
T~190-195K.

» All three mechanisms suggest that
dehydration will be less efficient as

temperatures decrease below ~ 195 K.

> More measurements < 185K needed.
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Back Trajectory Analysis

Run back trajectories from various points along the flight track

Compare the value of the minimum saturation mixing ratio along the trajectories to

measured H,O in the TTL at potential temperatures just above highest observed

clouds

40-day diabatic back trajectories
using ERA-interim and
climatological heating from Yang
etal., JGR, 2010

Use cloud field to determine
final convective influence

Determine minimum saturation
H,O between final convective
influence and flight track for
375 K< ® <390 K

Cluster of 25 trajectories
launched around each point and
average minimum H,O
calculated
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Inferred Dehydration Efficiency
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» Measured H,0 in the LMS consistently higher than the minimum saturation
H,O along trajectory

» Mean value of ratio indicates 30% dry bias by assuming dehydration to

minimum H,O__,

» Dry bias will be higher when wave-induced cooling included in trajectories
(Kim and Alexander, GRL, 2013)



Conclusions

ATTREX made use of the capabilities of the NASA Global Hawk platform to acquire
a substantial amount of high-quality water vapor and cirrus cloud data in the
Pacific TTL

ATTREX cloud sampling statistics in the western Pacific consistent with satellite
observations

Significant supersaturation observed in clear air
Low ice crystal numbers and small size result in slow quenching of supersaturation

Particle mass concentrated at small crystal sizes could limit dehydration due to
slow sedimentation

Dehydration inferred from the minimum saturation mixing ratio along back

trajectory produces a dry bias of ~¥30% relative to the measured H,O mixing ratios
in the LS

< This is similar to the 40-50% dry bias found by Liu et al. (JGR, 2010) comparing
reanalysis-based Lagrangian trajectories to MLS observations

< The inefficiency we infer will be larger than 30% when small-scale wave effects
are considered in the trajectory analysis
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