

Growth in stratospheric loading of very short-lived substances and their impact on ozone and climate

Ryan Hossaini,

Steve Montzka* and Martyn Chipperfield

Boulder Tuesday 21st July 2015

*NOAA/ESRL Global Monitoring Division, Boulder, CO

Stratospheric Bromine from VSLS

Key Questions

- 1. What is the impact of VSLS on ozone in the lower stratosphere?
 - → Which VSLS (natural vs anthropogenic) influence ozone most?
- 2. What are the radiative implications?
- 3. Has VSLS-driven ozone loss changed over time?
 - \rightarrow Contribution to the radiative forcing of strat. ozone
- 4. Is the stratospheric loading of anthropogenic VSLS changing?

Global Model Simulations

** Time-independent Br and I; trends considered for chlorine.

ΔO_3 column due to VSLS [2011]

i.e., the presence or absence of **all** VSLS

in the 2011 atmosphere

 $CIO + BrO ---- CI + Br + O_2$ $|C| + O_3 - C|O + O_2$ Br + O_3 ---- BrO + O_2 Net: 20₃ ---- 30₂

ΔO_3 column due to VSLS [2011]

Altitude-resolved ΔO_3 due to VSLS

Altitude-resolved ΔO_3 due to VSLS

Radiative Effect (RE) of O₃ loss

Is there a trend in VSLS-driven O₃ loss?

Trend in VSLS-driven O₃ loss?

[Reason 2.] Some anthropogenic VSLS are increasing throughout the global atmosphere:

(Cl and Br) to stratospheric O₃ RF since pre-industrial (bromine accounts for 75% of this RF)

Recent growth in strat. CI-VSLS

TOMCAT tropospheric model—transporting gases to the stratosphere: Organic chlorine at 15 km, 20°N to 20°S latitude

Sum CI = $(2 \times CH_2CI_2) + (3 \times CHCI_3) + (2 \times C_2CI_4)$

Model at 15 km: 87 ppt Cl (2013)

Model uses surface observations of CH_2CI_2 , and C_2CI_4 (NOAA) and $CHCI_3$ (AGAGE) as boundary condition.

Recent growth in strat. CI-VSLS

TOMCAT tropospheric model—transporting gases to the stratosphere: Organic chlorine at 15 km, 20°N to 20°S latitude

Sum CI = $(2 \times CH_2CI_2) + (3 \times CHCI_3) + (2 \times C_2CI_4)$

Model at 15 km:87 ppt Cl (2013)ATTREX at 15km:91 ppt Cl (2013)

Model uses surface observations of CH_2CI_2 , and C_2CI_4 (NOAA) and $CHCI_3$ (AGAGE) as boundary condition.

Modelled trend in Cl_v^{VSLS}

TOMCAT tropospheric model— Including product gases in total CI amounts

EXP3: Sensitivity inc. C₂H₄Cl₂ and C₂HCl₃ in addition

Modelled trend in Cl_v^{VSLS}

TOMCAT tropospheric model— Including product gases in total CI amounts

EXP3: Sensitivity inc. C₂H₄Cl₂ and C₂HCl₃ in addition

Modelled trend in Cl_v^{VSLS}

TOMCAT tropospheric model— Including product gases in total CI amounts

EXP3: Sensitivity inc. C₂H₄Cl₂ and C₂HCl₃ in addition

Summary

• Significant impact of VSLS on LS O₃

 $\rightarrow \Delta O_3$ of ~<u>8-12%</u> (for an atmosphere without VSLS) $\rightarrow O_3$ change is mostly from <u>natural</u> Br-containing VSLS

- VSLS-driven O₃ loss is efficient at influencing climate
 - \rightarrow <u>Radiative effect of -0.1 Wm⁻² (stratosphere in 2011)</u>
 - \rightarrow <u>4x more efficient</u> than CFCs at influencing climate
 - \rightarrow Small contribution (-0.02 Wm⁻²) to strat. O₃ <u>R. Forcing</u>

Stratospheric CI from anthropogenic VSLS increasing

- \rightarrow Growth of 3.7 ppt Cl/yr (2005-2013) (vs. -13.4 ppt/yr from LL ODS)
- \rightarrow CH₂Cl₂ not controlled by Montreal Protocol

For further details..

Hossaini, R., M.P. Chipperfield, S.A. Montzka, A. Rap,
S. Dhomse and W. Feng. (2015a), *Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone*,
<u>Nature Geosciences</u>, 8, 186-190.

Hossaini, R., M.P. Chipperfield, A. Saiz-Lopez, J. Harrison,
R. von Glasow, R. Sommariva, E. Atlas, M. Navarro,
S.A. Montzka, W. Feng, S. Dhomse, C. Harth, J. Muhle,
C. Lunder, S. O'Doherty, D. Young, S. Reimann, M. Vollmer,
P. Krummel, and P. Bernath. (2015b),
Growth in stratospheric chlorine from short-lived
chemicals not controlled by the Montreal Protocol,
Geophys. Res. Lett., 42, 4573-4580.

Misc Slides

Radiative effect of VSLS O₃ loss

Uncertainty in CHBr₃ emissions

Large uncertainty in <u>distribution</u> and <u>magnitude</u> of emissions

<u>Factor of 3</u> uncertainty in total global CHBr₃ emission

Hossaini et al. (2013, ACP)

Uncertainty in CH₂Br₂ emissions

Large uncertainty in <u>distribution</u> and <u>magnitude</u> of emissions

<u>Factor of 2</u> uncertainty in total global CH_2Br_2 emission

Hossaini et al. (2013, ACP)

Altitude-resolved ΔO_3 due to VSLS

Trend in VSLS-driven O₃ loss?

Vertical distribution of O_x catalytic loss cycles

Lacis et al. [1990, JGR]

Fig. 1. Radiative forcing sensitivity of global surface temperature to changes in vertical ozone distribution. The heavy solid line is a least squares fit to one-dimensional model radiative-convective equilibrium results computed for 10 Dobson unit ozone increments added to each atmospheric layer. Ozone increases in region I (below \sim 30 km) and ozone decreases in region II (above \sim 30 km) warm the surface temperature. No feedback effects are included in the radiative forcing.

" O_3 increments added near the tropopause produce the largest increase in surface temperature..

Because the greenhouse blanketing produced by a given atmospheric O_3 increment is directly proportional to the temperature contrast between the radiation absorbed and radiation emitted by the O_3 increment; since this temperature contrast is greatest for O_3 increments added near the tropopause, the RF efficiency on a per molecular basis is also greatest for O_3 changes near the tropopause."

Lacis et al. [1990, JGR]