

Measurement and simulation of CH₄, O₃, NO₂, BrO, and major brominated source gases during the NASA-ATTREX Global Hawk deployments in 2013: Implications for the photochemistry and total amount of bromine in the TTL and stratosphere

<u>K. Pfeilsticker¹</u>, E. Atlas³, R. Cheung², M. P. Chipperfield⁴, F. Colosimo², T. Deutschmann¹, B. Daube⁶, Ru-Shan Gao⁵, J. Elkins, D. Fahey⁵, W. Feng⁴, R. Hossaini⁴, M. Navarro³, J. Pittman⁶, R. Raecke^{1,2}, L. Scalone¹, M. Spolaor², U.Tricoli¹, T. Thornberry⁵, C. Tsai², B. Werner¹, S.C. Wofsy⁶, and J. Stutz²

(1) Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany

- (2) Department of Atmospheric and Oceanic Science, University of California, Los Angeles, USA
- (3) University of Miami, Miami, USA
- (4) National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, UK
- (5) NOAA Earth System Research Laboratory, Boulder, USA
- (6) Harvard University, Cambridge, USA

> Brominated VSLS are known to contribute 1 – 8 ppt to stratospheric Br_y (WMO-2011), but our (IUP-HD) best estimate is 4.1 ± 2.5 ppt (Dorf et al. 2006, and update in WMO-2011).

WMO-2007 notation: VSLS: very short lived species (life times < 6 months) SG: source gases (e.g. CFC, HCFC, halons, CH3Br, CH3I, CHBr3, CBr2Cl2, etc.) PG: products gases (e.g. HCI, IO, OIO, BrO, HBr)

Global Hawk deployments during NASA-ATTREX 2013, and 2014

Observation geometry (at 18 km) and radiative transfer at 350 nm

red: Rayleigh scattering green: Mie Scattering blue: Ground reflection line of sight: red line (single scattering)

(Tim Deutschmann, PhD thesis, 2015)

Steps to infer concentrations of the targeted gases

- 1. DOAS (Differential Optical Absorption Spectroscopy) spectral retrieval to get slant column amounts (SCDs) of the targeted gases (e.g., O₄, O₃, NO₂, BrO,
- 2. Retrieval of concentrations
- 2.1 Full version (c.f. optimal estimation) (Non)-linear mathematical inversion of measured slant column amounts with the following major ingredients
 - A priori fields of T, p, O₃, ... from SLIMCAT (ERA interim meteorology)
 - Aerosol/cloud OD from CPL Lidar and detailed scattering scheme for solid particles with constraints from particle observations on GH or HALO (in future)
 - RT constraint from measured O₄
 - Validation with measured in-situ O₃
- 2.2 O_3 (and O_4) scaling technique

Relevant photon path length for the targeted gases is inferred from in-situ measured O_3 (c.f., by NOAA on the GH) and/or calculated O_4 and by comparison with DOAS measured O_3 (O_4) for similar wavelength intervals

Science Flight 2 in 2013 (SF2-2013)

GH mini-DOAS: results DOAS-retrieval SF2 02/09/2013 - 02/10/2013

2.1 Optimal estimation (OE): Retrieval (MaRS) Flow Chart

2.1 Profile inversion by optimal estimation

Problems:

- OE depends on some assumptions, i.e. overhead and below profile,.....
- Quality of RT including its assumptions (e.g. aerosol profile, clouds, ..)
- OE only provides profiles at little temporal (for dives) and spatial resolution (with DOF~4)
- Accuracy is rather limited (see below), due mostly to Mie scattering contribution by aerosols and clouds not properly accounted for.

- ...

2.2. Concentration retrieval using the scaling method

- Infer the concentration of the targeted gas X
 - Use the differential absorption measured adjacent to an $\rm O_3$ absorption band
 - Scale concentration of X to the in-situ measured [O3] (or [O4], ..) concentration, via

Major advantage of the scaling technique as compared to OE is to largely remove uncertainties in assumptions regarding the RT, via the use of αfactor ratios!

Determination of α factors

α-factors are calculated from

 $\alpha_{X} = \frac{\sum_{h=Alt-500m}^{h=Alt+500m} [C_{X}]_{h} \times BAMF_{h} \times dh}{\sum_{h} [C_{X}]_{h} \times BAMF_{h} \times dh}$

where $BAMF_h$ (Box Airmass Factor) for the layer dh are calculated in 1D (or 3D) using SLIMCAT curtains in the RT model McArtim

- α-factors express how much of the total measured absorption comes from individual layer *dh*.
- RT simulations indicate that, for gases with similar shaped profiles (e.g., O₃, NO₂, BrO. ..), ratios of α-factors (α_{BrO}/α_{O3}) for adjacent wavelengths are only little sensitive on assumptions regarding the RT (aerosols, clouds, ...)!

<u>Contribution of tropospheric NO₂ and BrO to the measured</u> <u>limb absorption</u>

Consistency of our BrO measurements with Wang et al., 2015

Constraining the OE profile retrieval to the Wang et al., (2015) BrO profile (i.e. as a priori) indicates some inconsistency with our data!

<u>Approach/steps to inter-compare measured and predicted (CTM</u> <u>SLIMCAT/TOMCAT) traces gases for assessing total bromine and</u> <u>its photochemistry in the TTL/exLS</u>

- 1. Test of dynamics by comparison of measured (UCATS, and HUPCRS) and modelled CH_4
- 2. Test of photochemistry by comparisons of measured and modelled
 - \checkmark O₃, and NO₂
 - Amount of brominated source gases, in particular the VSLS i.e., Brv^{org}
 - \checkmark BrO, and inferred Br_v^{inorg}
 - ✓ Test of photochemical constants (e.g. J/k for BrONO₂ and k_{Br+O3})
 - Br_y^{inorg} is inferred from measured BrO, and the predicted BrO/Br_y^{inorg} partioning
- 3. Consequences for ozone photochemistry and RT heating

SLIMCAT/TOMCAT simulations

- 1. Dynamics: ECMWF with archived ERA-Interim convective mass fluxes
- 2. Kinetic and photochemical data: JPL-2011 with recent updates
- 3. Trace gases:
 - CH₄: AGAGE <u>https://agage.mit.edu/</u> and NOAA
 - Surface concentration of brominated source gases (20.55 ppt)
 - CH₃Br: 6.9 ppt
 - Halons: 7.99 ppt
 - CHBr₃: 1.4 ppt
 - CH₂Br₂: 1.05 ppt
 - \sum CHClBr₂, CHCl₂Br, CH₂ClBr, ... : ~1 ppt (Sala et al., 2014)
 - No other (c.f., inorganic) sources of bromine are assumed (e.g., Wang et al., 2015)
- 4. Run #583: Standard run with spin-up since 1979, and 1.2 x 1.2 degrees resolution from 1/1/2013 on
- 5. Runs #584&585; High resolution sensitivity runs starting from 1/1/2013

> with J/k for $BrONO_2$ increased by 1.75 (#584) (Kreycy et al. 2013) or

> Br + O_3 increased to the upper limit of JPL uncertainties (#585)

SLIMCAT simulation of CH₄, O₃, NO₂ and BrO curtains

Comparison of measured and modelled brominated source gases for SLIMCAT control run #583

0.8

GWAS (ppt)

1

1.2

0.6

0.5

0.6

Measurement vs control run #583 (SF1 on Feb. 6/7, 2013)

Measurement vs run with J/k_{BrONO2} increased (SF3 on Feb. 14/15, 2013)

Measurement vs run with k_{Br+O3} increased (SF3 on Feb. 14/15, 2013)

Measurement vs control run #583 (SF5 on Feb. 26/27, 2013)

Measurement vs control run #583 (SF6 on March 1/2, 2013)

<u>Total bromine Br_y (= Br_y^{org} + Br_y^{inorg}) as function of CH_4 </u>

Lists of (preliminary) findings

- 1. GH ATTREX flights mostly probed 3 regimes in 2013
 - subtropical lowermost stratosphere (LS_{extrop})
 - TTL
 - Mixing across the subtropical jet

2. Measured CH₄, O₃, and NO₂ compares excellently with SLIMCAT simulations

3. In the TTL measured Br_y^{inorg} (1 – 5 ppt) increases in overall agreement with observed and modelled Br_v^{inorg} destruction

4. Measured and simulated BrO (or Br_y^{inorg}) largely agree, but comparing the data on a flightto-flight basis indicates some variability that the model does not yet capture, due to

- > variable emissions of the brominated source gases (see the poster Navarro et al.,)
- uncertainties/discrepancies kinetic constants
 - for k_{BrO+NO2} i.e. J/k | _{BrO+NO2} = 1.7+0.4/-0.2 for BrONO₂ destruction and formation (Kreycy et al., 2013) (important for the LS_{extrop} Br_y^{inorg} partitioning)
 - for Br + O₃, which is \pm 30% uncertain at low T_s (important for the TTL Br_y^{inorg})

5. Our BrO detection limit of < 1ppt prevents to yet firmly conclude on the amount of Br_y^{inorg} influx (c.f. Wang et al., 2015), and the Br_y^{inorg} partitioning around the LZRH (Fernandez et al., 2015)

6. $\sum Br_y^{org} + Br_y^{inorg}$ inferred for LS_{extrop} and at the highest TTL level point to $[Br_y] = 19.5$ to 23 ppt in 2013, which is somewhat larger (0 – 3 ppt) than what is presently measured within the stratosphere.

Is some Br_y^{inorg} removed by heterogeneous processing of HBr, HOBr, ... on cirrus particles within TTL (e.g., Aschmann et al., 2011)?

Measurement of BrO mixing ratio above 33 km tropics

- The BrO measurement implied [Bry] = 21.5 ± 2.5 ppt for 4.5 year old air
- Simultaneous brominated SG measurements indicated [Bry] = 17.5 ± 0.4 ppt