The OMPS Limb Profiler Stratospheric Aerosol Observations and Comparisons to the GEOS-5 Chemistry-Climate Model

Peter R. Colarco¹, Valentina Aquila^{1,2}, Ghassan Taha^{1,3}, Robert Loughman⁴, Glen Jaross¹, Matthew DeLand^{1,5}, and Pawan K. Bhartia¹

¹Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC ²GESTAR/Johns Hopkins University ³GESTAR/USRA

⁴Department of Atmospheric and Planetary Sciences, Hampton University ⁵Science Systems and Applications, Inc

Outline

- OMPS Limb Profiler
- Aerosol detection in the UTLS
- Comparisons to GEOS-5 model
- Future Directions

OMPS Limb Profiler

- OMPS is the Ozone Mapping Profiler Suite, launched on the Suomi NPP satellite on October 28, 2011
- OMPS consists of three instruments:
 - Nadir Mapper (NM)
 - Nadir Profiler (NP)
 - Limb Profiler (LP)
- OMPS LP looks behind the satellite line of flight and views light scattered from molecules and aerosols in the illuminated limb through three vertically aligned slits with 250 km across-track spacing
- OMPS LP is a hyperspectral instrument viewing the wavelength range 290 - 1000 nm, with 1 nm spectral resolution in the UV and 10 nm resolution in the VIS
- Heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, GOMOS

- · 1330 local time ascending, sun-synchronous orbit
- OMPS LP limb view tangent follows nadir view point by about 7 minutes
- near-continuous curtains along track
- 1 km vertical sampling from near surface to about 105 km altitude effective ~2 km vertical resolution

Chelyabinsk Bolide

GEOS-5 simulation Feb. 23, 2013

Gorkavyi et al., *GRL*, 2013

Cloud and Aerosol Capabilities

View spanning three orbits, February 22, 2013

Aerosol Scattering Index (ASI)

$$ASI = In \left(\frac{I_o}{I_B} \right)$$

I_o = observed reflectanceI_R = modeled Rayleighonly reflectance

ASI is not a retrieval, but a semi-quantitative indication of presence of aerosols/clouds

Stratospheric Aerosol Layer

Zonal, daily mean ASI 30° - 40°N

GEOS-5 Model

- Goddard Earth Observing System (GEOS-5) Earth system model supports NASA science and mission support activities (e.g., field campaigns, mission development)
- Applications include meteorological and constituent reanalysis, OSSEs, and chemistry-climate modeling

GEOS-5 7-km nature run simulated aerosol distribution

- Current aerosol modeling capability is based on the GOCART scheme: size-resolved dust and sea salt, bulk mass of sulfate, and bulk black and organic carbon in hydrophobic and hydrophilic modes
- GOCART is run near-real time forecasting system and is the basis for the MERRAero and MERRA-2 aerosol reanalyses

Modeling Stratospheric Aerosols

- Baseline version of GOCART focused on tropospheric aerosols
- Recently added OCS tracer and associated chemistry (coupling GOCART to stratospheric chemistry mechanism) to simulate production of stratospheric sulfate aerosol layer
- Application to stratospheric chemistry/ dynamics, impacts of volcanic eruptions, geoengineering
- OMPS LP data set will be used to evaluate simulations; model will be used to help interpret OMPS LP observations
- In development is a microphysical model to simulate variations and perturbations in particle size

Comparison to OMPS ASI

- We want to find an appropriate field from the model to compare to OMPS LP observations
- OMPS: At latitudes 30° 40° N (influenced, e.g., by Asian anthropogenic aerosol and precursor sources) the ASI shows a peak signal around 20 km altitude near January 1
- <u>GEOS-5</u>: For the same region the model sulfate extinction profile peaks at near the surface with an elevated mid-year extinction peak reaching the tropopause

Comparison to OMPS ASI

- We want to find an appropriate field from the model to compare to OMPS LP observations
- OMPS: At latitudes 30° 40° N (influenced, e.g., by Asian anthropogenic aerosol and precursor sources) the ASI shows a peak signal around 20 km altitude near January 1
- <u>GEOS-5</u>: For the same region the model sulfate extinction profile peaks at near the surface with an elevated mid-year extinction peak reaching the tropopause
- ASI compares observed signal to expectation for pure molecular atmosphere
 - this is not unlike a mixing ratio
 - model mass mixing ratio presents a signal at similar altitudes, but seasonality is wrong

OMPS LP Scattering Angle

- Because OMPS LP is making a scattering measurement, it matters that the observation scattering angle changes with latitude and season
- At 30° N the range of scattering angle varies from 44° - 87° over the year

Aerosol Phase Functions

- Because OMPS LP is making a scattering measurement, it matters that the observation scattering angle changes with latitude and season
- At 30° N the range of scattering angle varies from 44° - 87° over the year
- For sulfate-like aerosol this is a range of aerosol phase function between 0.4 - 2, a factor of 5 variability in sensitivity

Aerosol Phase Functions

- Because OMPS LP is making a scattering measurement, it matters that the observation scattering angle changes with latitude and season
- At 30° N the range of scattering angle varies from 44° - 87° over the year
- For sulfate-like aerosol this is a range of aerosol phase function between 0.4 - 2, a factor of 5 variability in sensitivity
- Over the full scattering angle range sampled this is a range of 0.2 5, or a factor of 25

Aerosol Phase Functions

- Because OMPS LP is making a scattering measurement, it matters that the observation scattering angle changes with latitude and season
- At 30° N the range of scattering angle varies from 44° - 87° over the year
- For sulfate-like aerosol this is a range of aerosol phase function between 0.4 - 2, a factor of 5 variability in sensitivity
- Over the full scattering angle range sampled this is a range of 0.2 - 5, or a factor of 25
- From this reason we develop a scaling factor to account for ASI sensitivity to aerosol phase function, and apply to simulated mass mixing ratio

Scaling factor is time-dependent, per latitude: $f_{t,lat} = phase_{t,lat} / max(phase_t)_{lat}$

Original mixing ratio comparison

Scaled mixing ratio comparison

- Scaling brings the modeled seasonal cycle of stratospheric aerosol mixing ratio much more in line with the OMPS LP observations
- Similar results at other latitudes

50 100 Composition and Transport in the Tropical Troposphere and Lower Stratosphere Meeting, Boulder, CO, July 20 - 24, 2015

Future Directions Forward Modeling ASI

Event number (roughly latitude S -> N)

- Another approach is to simulate ASI directly from the model results
- This requires a radiative transfer code, which takes as input the simulated aerosol extinction profile and some assumptions on the aerosol properties (i.e., phase function, which implies particle size and other properties)
- This has been done for a single day (1/14/2013, one orbit example shown)
- Hemispheric asymmetry again reflects OMPS LP viewing scattering angle
- Clouds were not included in model simulation
- Simulated aerosol appears slightly too low in altitude

Future Directions Simulating Stratospheric Particle Sizes

Sectional aerosol module (CARMA) sees same sources of OCS-produced and volcanic SO₂. This permits simulation of aerosol particle size distribution, not possible with GOCART

Conclusions

- OMPS LP provides near-continuous, daytime observations of clouds and aerosols from near the tropopause to altitudes > 40 km
- Simulations with the GEOS-5 model are being performed to evaluate our modeling capabilities but also to help interpret the OMPS LP observations
- Comparisons of ASI to GEOS-5 model show model stratospheric aerosol seasonal cycling consistent with observations if you account for aerosol scattering properties
- Forward modeling the ASI and aerosol microphysical model simulations will help develop an extinction retrieval

Kelud Volcanic Eruption

