An assessment of the CAM5/ CARMA model: TTL cirrus cloud representation through comparisons with ATTREX 3 and CALIPSO observations

Authors: Christopher Maloney, Brian Toon, Charles Bardeen, Eric Jensen

The CAM5/CARMA model resolves ice particle size distribution

The size distribution compares well between model and observations for the mission

CAM5/CARMA grid box averaged RH_{ice} is generally drier than all sky RH_{ice} seen during ATTREX 3

CPL reveals two persistent cloud layers throughout ATTREX 3 between 12-14 km 16- 17 km

CPL reveals two persistent cloud layers throughout ATTREX 3 between 12-14 km 16- 17 km

The two observed cloud layers fall into the warm and cold cloud regimes described in Krämer et al., 2009

The two observed cloud layers fall into the warm and cold cloud regimes described in Krämer et al., 2009

For cold clouds, $0.005 - 0.2 \text{ cm}^{-3}$ ice number range and $1 - 10 \mu \text{m}$ sizes have been previously observed

Higher ice concentrations and larger particles expected in warm clouds

Tropics cloud fraction is too low in CAM5/ CARMA in the ATTREX 3 timeframe

COSP simulator shows CAM5/CARMA under predicts high cloud fraction

GOCCP-CALIPSO

CAM5/CARMA w/ COSP

CAM5/CARMA under predicts total cloud fraction

GOCCP-CALIPSO

CAM5/CARMA w/ COSP

Conclusions

ATTREX 3 Comparison:

- CAM5/CARMA represents clouds along ATTREX 3 flight track, but has too many large particles
- Resolution limitation causes the model to struggle with finer features

CALIPSO Comparison:

- At 1x1 degree resolution, CAM5/CARMA underestimates cloud fraction vertical profile above 8 km for the ATTREX 3 timeframe
- COSP simulator shows the model misses high cloud fraction around the equator

Future Work

- Perform a CAM5/Morrison & Gettleman COSP simulation to determine if CAM5/CARMA is improving on CAM5's cloud representation
- Continue to evaluate the model with COSP simulator against CALIPSO observations
- A combined CARMA aerosol and CARMA cloud model??

Thanks to...

- My advisor, Brian Toon, Charles Bardeen, and Eric Jensen for their guidance on this project
- Melody Avery and the CALIPSO team
- Jen Kay for assistance with COSP
- Sarah Woods, Paul Lawson, and the SPEC science team
- Glenn Diskin and the DLH science team
- NCAR, LASP, the University of Colorado

....and NASA for allowing me to participate in the awesome ATTREX 3 mission!

Extra Slides

Low Cloud Fraction

Mid Cloud Fraction

COSP Flow Chart

CAM5/CARMA Overlap Scheme

Maximum/random overlap scheme from Hogan and Illingworth (2000)

CAM5/CARMA Overestimates Number and Mass For Cold Cirrus Clouds

CAM5/CARMA Does a Good Job Capturing Warm Cloud Ice Concentration and Mass

CALIPSO Provides a Useful Tool to Evaluate GCM cloud representation

- Global coverage since 2006
- CALIOP lidar onboard capable of resolving high thin cirrus
- Few CARMA comparisons with CALIPSO
- COSP has not been used with CARMA

Image from NASA LaRC EPO site