Vertical and horizontal transport of water vapour and aerosol in the tropical stratosphere from high-resolution balloon-borne observations

LATM S

Sergey M. Khaykin ${ }^{1}$, J.-P. Pommereau ${ }^{1}$, E. Riviere ${ }^{2}$, M. Ghysels ${ }^{2}$, N. Amarouche ${ }^{2}$, F. Ploegner ${ }^{3}$, J.-P. Vernier ${ }^{4,5}$, F.G. Wienhold ${ }^{6}$, G. Held ${ }^{7}$

』${ }^{1}$ LATMOS, CNRS, Université de Versailles St Quentin, Guyancourt, France; ${ }^{2}$ GSMA, Université de Reims Champagne Ardenne and CNRS, Reims, France; ${ }^{3}$ Forschungszentrum Jülich, IEK-7, Jülich, Germany; ${ }^{4}$ Science Systems and Applications, Inc, Hampton, Virginia, US; ${ }^{5}$ NASA Langley Research center, Hampton, Viriginia, USA; ${ }^{6}$ ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland; ${ }^{7}$ Instituto de Pesquisas Meteorológicas (IPMet), UNESP, Bauru, S.P., Brazil

Abstract

We present the results of accurate balloon-borne observations of water vapor, methane and aerosol obtained during a field campaign held during March 2012 in Bauru, Brazil (22.3 S) in the frame of a French TRO-Pico project. The aim of the TRO-Pico project is to characterize the variability and frequency of convective cross-tropopause injections, their contribution at the regional wet season timescale, and to improve the understanding of their role with respect to the cold trap at a wider scale. The balloon payloads flown during the campaign included Pico-SDLA IR laser hygrometers, FLASH-B Lyman-alpha hygrometers, COBALD aerosol backscatter sondes and several other instruments for measurement of gas-phase and particle constituents. An S-band radar operating on the site provided the information on cloud tops. The water vapour profiles obtained by the two different measurement techniques are in excellent agreement, demonstrating high quality of the observations. The signatures of long-range horizontal transport are inferred from a series of vertical profiles, which show coincident enhancements in water vapour and aerosol accompanied by methane local minima at specific levels in the lowermost stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The intrusion of extratropical air is successfully reproduced by CLaMS chemistry transport model simulation, showing water-rich and methanepoor filaments extending to 20 S . The signature of local cross-tropopause transport of water is observed during a convectively active day, revealing water vapour enhancements of up to 0.7 ppmv as high as 405 K . These are shown to originate from convective overshoots upwind detected by the local S -band radar. The relative contribution of the horizontal transport and that of local updrafts to the stratospheric humidity is discussed.

Measurements and modeling setup

Horizontal transport

Vertical transport

```
Water vapour enhancements at 17.1 and 17.8 km observed in descent and (of lesser amplitude) in
ascent profiles aree associat
-Trajectory analysis shows precisely that the air in both humid layers originates from the two different
convective cells reaching above 17 km allitude as seen from the radar echo-top images
```


Balloon trajectory (blue curve) on 13 Mar and backward rajectories initialized at the time when the balloon payloa was crossing 17.8 km (upper panel) and 17.1 km (lower
anel) altitude during ascent and descent. The trajectories panel) altuude during ascent and descent. The trajectories
are color-coded by UTC time. The black arrows show the ocation of airmasses along the trajectories at the time of dar image

GOES-12 IR brightness temperature 13. March 2012 17:30 UTC

BRAMS cloud resolving model simulation for 13 Mar 2012

Accura berween the measured wind and GDAS analysis Accuracy and precision of water vapour measurements are
confirmed by the agreement between FLASH-B and Pico-SDLA confirmed by the
measurements

Summary

Observed features in LS water vapour, aerosol and methane vertical distribution are explained by in-mixing from the extra-tropical stratosphere and local vertical transport (convective cross-tropopause overshooting)
\Rightarrow Confirmed accuracy and precision of water vapour profiles and trajectory analysis

Horizontal transport (in-mixing):

- Coincident layers of enhanced water vapour and aerosol result from advection of water/aerosol -enriched, methane-poor air masses from the extra-tropical overworld
- In-mixing event is successfully reproduced by CLaMS CTM

Vertical transport (convective overshooting)

- Sharp peaks in $\mathrm{H}_{2} \mathrm{O}$ profile detected on 13 March 2012 are caused by local overshooting hydration produced by small convective cells upwind
- Injection of water directly in the LS at 17.8 km is reproduced by BRAMS CRM

Acknowledgements. The work was supported by the French Agence
National de Recherche (ANR) Tro-Pico project. (htto National de Recherche (ANR) Tro-Pico project. (http://h wwwi.univ-
reims.firsitelautreltro-picol). We express our sincere gratitude to the personnel of IPMetUNESP (Bearu, Brazsi) for spoviding the infrastructure and manpower and especially
with balloon operation during the campaign.

[^0]
[^0]: Presenter info:
 Dr. Sergey M. Khaykin

 Tel: +33 (0)1 80285206

