Two decades of water vapor measurements with FISH: A review with special emphasis on TTL water vapor

¹ Institut für Energie und Klimaforschung 7, Forschungszentrum Jülich, 52425 Jülich, Germany; ³ Deutsches Zentrum für Luft und Raumfahrt, FX, 82234 Oberpfaffenhofen, Germany; ⁴ Central Aerological Observatory, Dolgoprudny, Russia; ⁵ NOAA ESRL Chemical Sciences Division, Boulder, CO, USA; ⁶ Cooperative Institute for Research in Environmental Sciences, University of Szeged, Szeged, Szeged, Hungary; ⁸ MTA-SZTE Research Group on Photoacoustic Spectroscopy, Szeged, Hungary; ⁹ Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany; ¹⁰ Reaktive Strömungen und Messtechnik, Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany; ¹¹ Institute for Meteorology and Climate Research (IMK-AAF), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; * now at: Institute of Energy and Environmental Technology (IUTA), 47229 Duisburg, Germany; * deceased

(1) Motivation

- Water vapor in the upper troposphere and lower stratosphere (UT/LS) plays an important role in the climate of the Earth (affects radiation directly as a gas and indirectly in cloud formation processes)
- Accurate measurements of water in the UT/LS are required to understand the underlying processes
- Difficulties in measuring water vapor in the UT/LS caused by the low water vapor concentration
 - Iarger systematic discrepancies between hygrometers have been reported (Fahey et al., 2014; Rollins et al., 2014)
- More than two decades of the FISH hygrometer:
 - > 100 publications including FISH meas.
 - a comprehensive review of the measurement principle, calibration procedure and data evaluation is performed
 - Overview of TTL total water meas. with FISH

(2) FISH instrument & operation

- Fast In-situ Stratospheric Hygrometer (FISH) airborne Hygrometer for accurate and precise measurement of total water mixing ratios (WMR) (gas phase + evaporated ice) in the UT/LS
- Measurement quality based on regular calibration to a water vapor reference (MBW DP30)
- From 348 FISH aircraft flights in tropics, midlatitudes and the polar region a unique set of UT/LS water vapor data is compiled
 - Cirrus ice water content (e.g. Schiller et al. 2008; Krämer et al. 2009; Luebke et al. 2013)
 - Water vapor transport (e.g. Kunz et al. 2008)
 - Process Studies (e.g. Rolf et al., 2015)

 Stability of calibration factors within one campaign (better 1.5%)

J. Meyer^{1,*}, C. Rolf¹, C. Schiller^{1,†}, S. Rohs^{1,2}, N. Spelten¹, A. Afchine¹, M. Zöger³, N. Sitnikov⁴, T. D. Thornberry^{5,6}, A. W. Rollins^{5,6}, Z. Bozóki^{7,8}, D. Tátrai^{7,8}, V. Ebert^{9,10}, B. Kühnreich^{9,10}, P. Mackrodt⁹, O. Möhler¹¹, H. Saathoff¹¹, K. H. Rosenlof⁵, and M. Krämer¹

(3) FISH principle

Lyman-α source: flow lamp with RF field (Ar + 1% H₂)

FISH formula to derive WVMR with calibration factors (ck, fu)

Extended formula for especially low mixing ratios at high pressures (AIDA laboratory cond., water vapor partial pressure difference (wall – air sample) large, Peq - P)

$$\mu = c_k \cdot \frac{N_g - f_u \cdot N_u}{I_0} - c_k \cdot X_w \cdot \frac{(P_{eq.} - P) \cdot I_0}{flow}$$

(4) Calibration setup

extended formula \rightarrow better agreement at all pressures

Agreement of FISH with other hygrometers has improved over time

(8) Conclusion

(5) FISH intercomparisons

FISH <10% against others (AquaVit-1); APicT 1,6%, NOAA-TDL 0,9% (AquaVit-2)</p>

Agreements:

2 hPa	Year	Instrument	Range (ppmv)		Agreement (%)		Campaign	Platform
Troccinox -0.295 (0.904)			low	high	low	high		
Scout -0.474 (0.830)	1995	MOZAIC		100-500		10 in RH	_1	Falcon
AMMA -0.208 (0.711) Reconcile -0.772 (0.304)	1999-2010	FLASH	1-1000		≤ 30		several ²	Geophysica
MACPEX -0.445 (0.569)	2000	HWV, JPH, NOAA-CMDL	<10		20		SOLVE ³	DC-8 and ER-2
	2003	MOZAIC		10-600		5 in RH	CIRRUS-3 ⁴	Learjet
•	2007	HWV, FLASH, APicT, CFH, JLH	<10	10-150	20 (10*)	<10	AquaVIT-1 ⁵	AIDA
**	2011	CIMS, HWV, DLH	<10	10-150	10 - 20	< 7	MACPEX ⁶	WB-57
MACPEX	2012	HAI	1.6-4		-14.95.9		TACTS/ESMVal ⁷	HALO
	2013	WASUL		10-1000		-13.3	Airtoss	Learjet
•	2013	APicT, NOAA-TDL	7-20	20-600	-2.4 - 0.7	-0.9 - 1.6	AquaVIT-2	AIDA
◆ a Beconcile	2014	SHARC		10-1000		-3.7	ML-Cirrus	HALO
2009 2010 2011 2012	1: see Helten o 3: see Kley et 5: see Fahey e	et al. (1998), 2: see Krämer et al. (200 al. (2000), 4: see Neis et al. (2014), t al. (2014), 6: see Rollins et al. (2014	19), 1),					

Excellent agreement between FISH and MLS: differences are between ± 2 ppmv; Mean differences range from -0.2 to -0.5 ppmv

Total accuracy of FISH is 6 % in the range 4-1000 ppmv (as stated also in previous publications; reference Instrument DP30 2-4 %)

Precision of FISH: 0.15- 0.4 ppmv depending on instrument performance

 modified FISH calibration evaluation for special AIDA conditions (low WVMR at high pressures) improves agreement to better than 10%

Four campaigns with FISH in the TTL showing dehydration, convective injection of ice crystals, H₂O tape recorder

Agreement of FISH with other hygrometers has improved over time from up to 30% or more to about 5-20% @<10ppmv and to 0-15% @>10ppmv

In the last two decades, the position of FISH has established as one of the core instruments for in-situ observations of water vapor in the UT/LS

More Information under acpd-15-7735-2015:

Meyer, J., Rolf, C., Schiller, C., Rohs, S., Spelten, N., Afchine, A., Zöger, M., Sitnikov, N., Thornberry, T. D., Rollins, A. W., Bozóki, Z., Tátrai, D., Ebert, V., Kühnreich, B., Mackrodt, P., Möhler, O., Saathoff, H., Rosenlof, K. H., and Krämer, M.: Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review, Atmos. Chem. Phys. Discuss., 15, 7735-7782, doi:10.5194/acpd-15-7735-2015, 2015

(6) WVMR in the TTL

- and TROCCINOX

- NH/SH difference)

(7) Cirrus clouds in the TTL

- APE-THESEO 1999
- TROCCINOX 2005
- SCOUT-O3 2005
- Cirrus clouds are found up to 420 K in the TTL
- Ice water content (IWC) of TTL cirrus has a wide range (0.01-500 ppmv) in contrast to Arctic / Mid-latitudes
- IWC can reach fractions of total WVMR up to 100 % in the TTL
 - Indication for strong dehydration at bottom of the TTL
- \succ HNO₃ content in ice more relevant (Krämer et al. 2008)
- Convective injections with IWC moisten sub-saturated environment in the TTL up to 420 K

 TROCCINOX (Brazil Feb. 2005) SCOUT-O3 (Australia Nov-Dec 2005) AMMA (Burkina Faso Aug. 2006)

Lowest WVMR 1.3 ppmv during SCOUT and 1.6 ppmv during TROCCINOX; in contrast 4-6 ppmv at cold point during AMMA

Highest RH_{ice} and cloud occurrence during SCOUT (ongoing dehydration) cloud formation and high saturation at cold point; not frequent during AMMA

 Convective injections with RH_{ice} >100% moisten sub-saturated environment in the TTL up to 420 K

Head of tape recorder at tropopause (380 K): minimum H_2O in NH winter, maximum during AMMA

 Hygropause at tropopause for NH winter campaigns; hygropause at 19-20 km during AMMA

H₂O at hygropause during AMMA higher than min H₂O of other campaigns (inter-annual variability,

TTL campaigns with cirrus:

