

Ryan Stauffer, PhD Candidate (Advisor Dr. Anne M. Thompson) Penn State/UMD/ESSIC 22 July, 2015 CT³LS Meeting

Talk Road Map

- 1) Why Cluster Ozonesonde Data? Introduction to Self-Organizing Maps (SOM)
- 2) Previous Tropical Ozonesonde SOM Classification (i.e. Jensen et al., 2012, JGR)
- 3) Clustering Free Troposphere/Lower Stratosphere SHADOZ Ozonesonde Profiles with SOM
 - Station differentiation, separation into O₃ regimes/regions
 - Upper troposphere/TTL O₃ example: Comparisons with O₃ climatology

1) Why Cluster Ozonesonde Data? Introduction to Self-Organizing Maps (SOM)

- Ozonesonde (high resolution, high accuracy) measurements are preferred method for model and satellite profile validation
- Coarse vertical resolution from satellites and chemical models often struggles to capture tropopause O₃ gradients
- Stauffer et al. (2015, submitted JGR) show with CONUS data that monthly O₃ climatology fails to reproduce O₃ variability both in free troposphere and near tropopause
 - Satellites and models use ozonesonde climatologies as a first guess
 - Approach: Cluster ozonesonde profile data to capture variability and identify dominant O_3 profile types

The Self-Organizing Map (SOM; Kohonen, 1995)

- User defines a lattice of nodes (e.g. 1 or 2-D rectangular shape)
- Nodes initialized with data set either randomly or linearly: PCA decomposition interpolates between largest principal components
- Data fed to nodes to find Best-Matching Unit (BMU).
 Neighbor nodes also updated based on proximity to BMU

Fig. 3 from Vesanto et al. (2000)

Final Product: Each SOM node is the mean of its member data, map organized with like nodes adjacent in the map

For more SOM methods info see Stauffer et al. (2015, submitted JGR)

2) Previous Tropical Ozonesonde SOM Classification (i.e. Jensen et al., 2012, JGR)

Fig. 16 from Jensen et al. (2012)

Natal, Brazil and Ascension Island example cluster (left), with corresponding back trajectories (right). Enhanced O_3 above the boundary layer connected to biomass burning on African continent. SOM clusters of O_3 profiles correspond to seasonality, stability, OLR, and biomass burning effects (above)

What we've learned so far from Jensen et al. (2012), Stauffer et al. (2015, submitted JGR):
1) Deviations from climatology, especially near the tropopause can be profound
2) Closely located sites can have large O₃ distribution differences exposed by SOM

3) Clustering Free Troposphere/Lower Stratosphere SHADOZ Ozonesonde Profiles with SOM

SHADOZ Logo from http://croc.gsfc.nasa.gov/shadoz/

SHADOZ O₃ Profile Locations

- Data set of 6933 O₃ mixing ratio profiles from 14 SHADOZ sites (some record length differences, all months well-represented)
- Jensen et al. (2012): SOM run on surface to 15 km data to avoid tropopause O₃ gradients in the tropics
- We run SOM on surface to 18km O₃ mixing ratios to capture TTL variability
- Run SOM both on combined SHADOZ data set (identify site differences) and for each individual site (comparisons with climatology)

Site	Lat	Lon	Elevation	# Profiles	Record
Alajuela, Costa Rica	9.98	-84.21	899 m	360	2005-2013*
Ascension Island	-7.98	-14.42	91 m	526	1998-2010
Suva, Fiji	-18.13	178.4	6 m	328	1998-2013
Hanoi, Vietnam	21.02	105.8	7 m	190	2004-2014
Heredia, Costa Rica	10.0	-84.11	1176 m	360	2005-2013*
Hilo, HI, USA	19.43	-155.04	11 m	1399	1982-2015
Irene, South Africa	-25.9	28.22	1524 m	289	1998-2014
Watukosek-Java, Indonesia	-7.5	112.6	50 m	319	1998-2013
Kuala Lumpur, Malaysia	2.73	101.7	17 m	340	1998-2013
Nairobi, Kenya	-1.27	36.8	1795 m	717	1998-2015
Natal, Brazil	-5.42	-35.38	42 m	488	1998-2014
Paramaribo, Suriname	5.81	-55.21	7 m	530	1999-2014
Reunion Island	-21.06	55.48	24 m	512	1998-2014
Pago Pago, American Samoa	-14.23	-170.56	77 m	551	1998-2015
San Cristobal, Galapagos	-0.92	-89.60	8 m	403	1998-2014 8

All SHADOZ sites, 2x2 SOM (4 clusters)

All 6933 profiles separated into four clusters with SOM. Black highlights the cluster average with all four clusters shown in grey on each plot for comparison.

Note tropopause height variability: Top left = High tropopause, low tropospheric O_3 Bottom right = Low tropopause, dynamically influenced

All SHADOZ sites, 2x2 SOM (4 clusters)

Same four clusters shown with each site's contribution color coded. Clustering with all sites combined allows simple intercomparison of tropical/subtropical ozonesonde sites

Quickly establish facts like Hilo and Irene exhibit the most frequent subtropical O_3 profile characteristics, more than Hanoi and Reunion at similar latitudes

Expand to 3x3 SOM (9 clusters): More Detail

Same as previous plot. Cluster highlighted in black, all nine clusters in grey for comparison. Organizational features of SOM more apparent with 9 clusters, like clusters adjacent

Similar organization as 2x2 SOM, Top left = High tropopause, low tropospheric O₃ Bottom right = Low tropopause, dynamically influenced

Expand to 3x3 SOM (9 clusters): More Detail

Han<u>ioi</u> Reunion Irene

Individual Site Ex: Nairobi, Kenya 2x2 SOM

Four clusters of Nairobi, Kenya (-1.27°, 36.8°) express variability better than monthly climatology

- 12 km O₃ ranges from **45 ppbv** (Jan) to **75 ppbv** (Oct/Nov) using monthly averages
- 12 km O₃ varies by a factor of 2 from cluster 3 (**39 ppbv**) to cluster 2 (**80.5 ppbv**)

What O_3 anomalies do we observe if we compare profiles in each cluster to their respective monthly climatology (taken from ozonesonde data set)?

Comparisons with monthly O₃ climatology at Nairobi, Kenya

Average O₃ % anomalies from monthly climatology for each SOM cluster

Largest anomaly near tropopause in cluster 4, but 3 of 4 clusters, representing 75% of all profiles at Nairobi, Kenya, average > $\pm 20\%$ O₃ beyond climatology in upper troposphere

Even at sites close to equator, it is vital to know tropopause height, and to represent upper tropospheric O_3 variability with accuracy better than climatological averages

Summary/Two Main Conclusions

- SOM classification discriminates Tropical West Pacific, Tropical South Atlantic, Subtropical and Mixed O₃ regimes based on dominant O₃ profile shapes
- SOM quantifies near-tropopause O₃ variability otherwise masked by monthly/seasonal averaging typical of standard O₃ climatologies
 - Achieved even with as few as four clusters (Nairobi example)
 - Especially true for near-tropopause O₃ gradients in subtropics
 - Even in tropics, it is not good enough just to accurately mark tropopause height. Models and satellite profile information must improve over climatology to describe day-to-day tropical O₃ measurements
- Future applications? TTL H₂O_v clustering, comparisons with O₃

Acknowledgments

- Advisor Dr. Anne M. Thompson
- "Gator" Team: N. Balashov, H. Halliday, S. Miller (at Penn State), D. Kollonige, Z. Fasnacht (at UMD)
- SHADOZ Station PIs: B. Calpini, GJR Coetzee, M. Fujiwara, B. Johnson, G. Laneve, NP Leme, M. Mohamad, S-Y Ogino, S. Oltmans, F. Posny, R. Scheele, R. Selkirk, F. Schmidlin, M. Shiotani, V. Thouret, H. Vömel
- Thank you for your attention

Select References

- Jensen, A. A., A. M. Thompson, and F. J. Schmidlin (2012), Classification of Ascension Island and Natal ozonesondes using self-organizing maps, *J. Geophys. Res.*, 117, D04302, doi: 10.1029/2011JD016573.
- Stauffer, R. M., A. M. Thompson, and G. S. Young, Free tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps (2015), 2015JD023641, submitted, J. *Geophys. Res.*
- Thompson, A. M. et al., Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products (2012), *J. Geophys. Res.*, 117, D23, doi: 10.1029/2011JD016911
- Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas (2000), SOM Toolbox for Matlab 5, report, Helsinki Univ. of Technol., Helsinki, Finland.