<u>Revisiting water vapour seasonal cycle observed in tropical lower</u> <u>stratosphere (TLS):</u> <u>Role of BDC, convective activity and ozone</u>

> Shipra Jain, A.R. Jain, T.K. Mandal Radio and Atmospheric Sciences Division CSIR-National Physical Laboratory (NPL) New Delhi, India

> > Presented by: Ms. Shipra Jain (PhD Student, AcSIR-NPL)

at

'Composition and transport in tropical troposphere and lower stratosphere (CT3LS)' meeting 20-23 July, 2015 Boulder, Colorado, USA

TLS water vapour seasonal cycle consists of a hydrating and dehydrating phase

HYDRATION OF TLS

Observed during NH summer monsoon

Location: Asian (AMR), American and African monsoon region

DEHYDRATION OF TLS

Observed during NH winter-spring

Location: Indonesian Australian western Pacific region (IAWPR)

Hydration of TLS

Interpolated OLR distribution from NOAA

Hydration of TLS

 T_{100} and WVMR₁₀₀ are observed to be closely related over AMR (Jain et al., 2013).

Patches of extremely low temperatures near the tropopause level are also observed (Jain et al., 2006, 2010 and 2011).

110

Longitude (°E)

23 Aug 1999, 00HRS

Longitude (°E)

100

110

It is not understood that how the hydration of TLS takes place despite the presence of patches of extremely low tropopause temperatures.

Dehydration of TLS

•Saturation is observed near the tropopause level.

•Favorable conditions for 'Freeze drying' process provided the air in this region stays for a sufficiently long time.

Therefore, it remains to be resolved that how dehydration takes place over IAWPR in the presence of active convection.

Height profiles of WVMR₁₀₀, T₁₀₀ and RHI over the IAWPR

Factors affecting water vapour seasonal cycle in TLS

TLS water vapour and tropopause temperatures are closely linked over both the regions

To understand the water vapour seasonal cycle, it is important to understand the processes which influence the tropical tropopause temperatures.

Quantification of the role of various processes is done by following methodology:

(a)BDC is a zonally uniform circulation and zonal mean temperatures are used to account the contribution of BDC to T_{100} seasonal cycle.

$\Delta T_{100} = T_{100} (LOCAL) - T_{100} (ZONAL) (in K)$

(b) Multiple linear regression analysis is carried out to explain the additional decrease or increase in tropopause temperatures over IAWPR due to convective activity and low ozone

 $\Delta T_{100} = a_0 + a_1^* (\Delta OMR_{100}) + a_2^* (\Delta OLR) (in K)$

Ozone mixing ratio- Aura TES

Image source: mynasadata.larc.nasa.gov

Convective cloud data- ISCCP D1

Time series of OLR, OMR₁₀₀, T₁₀₀ and WVMR₁₀₀ over AMR and IAWPR

 AMR: OLR is consistently low during whole NH summer .
IAWPR: Only few low OLR events are observed over during NH winter.

- 2. Total convective cloud pixel count is greater over AMR, suggesting more number of convective events over AMR.
- 3. Convective cloud pixel count with pressure ≤ 150 hPa is also high over AMR indicating that deep penetrating convection is significantly more over AMR.
- Deep convective clouds with top height ≥ 14 km are observed more often over AMR.

Therefore, the above observations indicate a relatively intense convective activity over AMR.

Values of coefficients obtained from regression analysis

	Regression statistics over the Asian region	Regression statistics over the western Pacific region
No. of		
observations	1437	1437
Intercept (a ₀)	-0.643 ± 0.051	-1.179 ± 0.032
$\Delta OLR(\mathbf{a}_1)$	0.019 ± 0.001	0.028 ± 0.001
$\Delta OMR_{100} (a_2)$	0.052 ± 0.002	0.011 ± 0.002

Quantitative contribution of various processes in giving rise to seasonal cycle in T_{100} over AMR and IAWPR

S. No.	Process	Mean Change in T ₁₀₀ over Asian region (K)	Mean change in T ₁₀₀ over the western Pacific (K)
1.	BDC	2.38 ± 1.19	3.47 ± 1.68
2.	a_0 (Mean ΔT_{100} throughout	-0.64 ± 0.05	-1.18 ± 0.03
	the year)		
3.	Contribution of ΔOLR to	0.74 ± 0.04	0.26 ± 0.01
	seasonal change in T ₁₀₀		
4.	Contribution of ΔOMR to	0.11 ± 0.09	0.22 ± 0.06
	seasonal change in T ₁₀₀		
	Sub total	2.5-5.2	3.4-7.0
5.	Contribution of wave	1-2	1-2
	activity (sub seasonal)		
	Grand total	3.5-7.2	4.4-9.0

Observed, predicted and residual time series for T₁₀₀

Wave activity in T_{100} with amplitude 1-2 K is visible over AMR and IAWPR

Scatter plot of T₁₀₀ and WVMR₁₀₀ over AMR and IAWPR

AMR	IAWPR
r = 0.6	r = 0.9
More scatter (Due to anomalous increase in temperature during NH winters)	Less scatter
WVMR ₁₀₀ respon abrupt changes AMR.	ds poorly to th in T ₁₀₀ ove

It is evident from this analysis that $WVMR_{100}$ follows T_{100} more closely over IAWPR as compared to AMR.

Conceptual picture of likely air transport over Asian monsoon and western Pacific region

Asian Monsoon region

NH summer-monsoon (Local convective period)

Western Pacific region

NH winter-spring SH summer-monsoon (Local convective period)

Percentage area covered by $T_{100} \le 191 \text{ K}$ over AMR and IAWPR

Year	Area coverage (%)	
	Asian	Western
		Pacific
June-September 2006	5.45	0.3
June -September 2007	12.3	1.9
June-September 2008	6.8	0.0
Mean	8.2 ± 3.6	0.7 ± 1.0
December 2006 to	11.2	28.2
March 2007		
December 2007 to	54.2	86.3
March 2008		
December 2008 to	19.0	64.4
March 2009		
Mean	28.0 ±	59.6 ±
	22.9	29.3

Spatial distribution of T_{100} (K) over the tropical region

Spatial distribution of OLR (Wm⁻²) over the tropical region

Low OLR occur over the same general area as low T₁₀₀

Spatial distribution of daily T_{100} (K) obtained from the Era Interim data over the tropical region for 25 June 2006 to 10 July 2006

Spatial distribution of daily T₁₀₀ (K) obtained for 9 December 2006 to 24 December 2006

CONCLUSIONS

Hydration over AMR

BDC contributes maximum to the T_{100} seasonal cycle but the contribution of convection is also significant.

More number of deep penetrating convection clouds is observed over this region as compared to IAWPR.

Areas over which extreme low T_{100} occur are patchy and tropopause temperatures > 191K occur over a relatively much larger area. This indicates that freeze-drying process is perhaps occurring over a relatively smaller area and therefore it may not be so effective.

CONCLUSIONS Dehydration over IAWPR

Deep penetrating convection is relatively less frequent.

The tropical upwelling driven BDC is relatively enhanced during the NH winter spring season, resulting in extremely low T_{100} over a large geographical area of the Southern tropics covering IAWPR.

Low OMR_{100} during the NH winter also seem to contribute to the low values of T_{100} over this region.

Occurrence of extreme low T_{100} (≤ 191 K) over a relatively larger area of the tropics, coupled with a relatively lesser number of deep penetrating convection events, indicates that 'Freeze and dry process' perhaps occur over a relatively larger area resulting in dehydration of TLS. Thank you