OH from reactions of HO₂ with organic peroxy radicals (RO₂)

<u>Christoph Groß</u>,^{1,*} Terry Dillon,¹ and John Crowley¹

¹ Max-Planck-Institut für Chemie, Mainz, Germany.

* Corresponding author: christoph.gross@mpic.de

The OH yield (α) of the reactions of HO₂ with twelve different RO₂ has been determined experimentally using Pulsed Laser Photolysis (PLP) combined with Laser Induced Fluorescence (LIF) and Transient Absorption Spectroscopy (TAS). Direct measurement of the main species OH, HO₂, RO₂ and O₃ enabled extraction of α via numerical simulation of their time dependent concentration profiles.

$HO_2 + RO_2$	>	$HO + RO + O_2$	R1a
		$ROH + O_3$	R1b
		$RO_2H + O_2$	R1c

A wide range of RO_2 was investigated, including ones with oxo-, hydroxy-, fluoro- and aromatic substituents. We found the highest values of α (larger than 70%) for RO_2 bearing a carbonyl group close to the peroxy entity.