Low temperature oxidation of butanol: theoretical kinetic modeling

Tatsuo Oguchi, ^{1*} Motoki Ito,¹ and Akira Miyoshi²

¹ Toyohashi University of Technology, Toyohashi, Aichi, JAPAN

Low temperature oxidation mechanism of 2-butanol was investigated theoretically. The reaction paths for oxidation of some hydroxybutyl radicals formed from 2-butanol were followed by CBS-QB3 level energy calculations as:

$CH_3C(OH)CH_2CH_3 + O_2$	\rightarrow CH ₃ C(OH)(OO)CH ₂ CH ₃	(1)
CH ₃ C(OH)(OO)CH ₂ CH ₃	\rightarrow CH ₃ C(O)CH ₂ CH ₃ +HO ₂	(2)

and

$CH_3CH(OH)CHCH_3 + O_2$	\rightarrow CH ₃ CH(OH)CH(OO)CH ₃	(3)
CH ₃ CH(OH)CH(OO)CH ₃	\rightarrow CH ₃ CH(O)CH(OOH)CH ₃	
	\rightarrow CH ₃ CHOOH + CH ₃ CHO	(4a)
	\rightarrow CH ₂ CH(OH)CH(OOH)CH ₃	
	\rightarrow CH ₃ CHOOH + CH ₂ CHOH	(4b)
	\rightarrow CH ₃ C(OH)CH(OOH)CH ₃	
	\rightarrow CH ₃ C(OH)CH(-O-)CH ₃ + OH	(4c).

Other reaction paths were also examined, however, considerable reaction path was not found. Canonical variational TST calculation on the calculated minimum energy path for reaction 1, 3 and multi-well, multi-channel RRKM calculation were performed for the reactions 1-4 to obtain the reaction rate constants. The first formally direct reaction mechanism (the reaction 1 and successive reaction 2) were highly exothermic (~110 kJ mol⁻¹) and barrierless reaction, so that the rate constant was very large $(1-10 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1})$ even at room temperature and little dependency for pressure and temperature was found. On the other hand, the branching fractions of the reaction 4a-4c and competitive stabilization channel strongly depend on the total pressure and temperature. However, reaction 4a was most important path at any pressure under the 900 K temperature range because indirect reaction 4a was also dominant (ϕ ~0.7) for overall unimolecular reaction of the stabilized peroxy radical. The rate constants obtained in this study were applied for detailed kinetic modeling for auto-ignition of butanols.

This work was partly supported by Grants-in-Aid for Scientific Research (B) #23360091, JSPS, Japan.

² The University of Tokyo, Bunkyo-ku, Tokyo, JAPAN

^{*} Corresponding author: oguchi@tut.jp