Determination of the Rate Constants for the $NH_2(X^2B_1) + NH_2(X^2B_1)$ and $NH_2(X^2B_1) + H$ Recombination Reactions with Collision Partners CH_4 , C_2H_6 , CO_2 , CF_4 , and SF_6 at Low Pressures and 296 K

Gokhan Altinay and R. Glen Macdonald*

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4381

The recombination rate constants for the reactions $NH_2(X^2B_1) + NH_2(X^2B_1) + M$ and $NH_2(X^2B_1)$ + H +M, where M was CH₄, C₂H₆, CO₂, CF₄, or SF₆, were measured in the same experiment over the pressure range 1 to 20 Torr and 7 to 20 Torr, respectively, at 296±2 K. The NH₂ radical was produced by the 193 nm laser photolysis of NH₃. Both NH₂ and NH₃ were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH_2 on the ${}^{1}2_{21}$ $\epsilon^{-1}3_{31}$ rotational transition of the (0,7,0) $A^{2}A_{1} \epsilon$ (0,0,0) $X^{2}B_{1}$ electronic transition near 675 nm and NH₃ in the IR on either of the inversion doublets of the ${}^{q}Q_{3}(3)$ rotational transition of the v₁ fundamental near 2999 nm. The NH₂ self-recombination clearly exhibited fall-off behavior for the third-body collision partners used in this work. The pressure dependences of the NH₂ selfrecombination rate constants were fit using Troe's parameterization scheme, kinf, ko, and Fcent, with $k_{inf} = 7.9 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, the theoretical value calculated by Klippenstein et al.⁽¹⁾ The individual Troe parameters were: CH4, $k_0^{CH_4} = 9.4 \times 10^{-29}$ and $F_{cent}^{CH_4} = 0.61$; C2H6, $k_0^{C_2H_6} = 1.5 \times 10^{-28}$ and $F_{cent}^{C_2H_6} = 0.80$; CO2, $= k_0^{CO_2} 8.6 \times 10^{-29}$ and $F_{cent}^{CO_2} = 0.66$; CF4, $k_0^{CF_4} = 1.1 \times 10^{-28}$ and $F_{cent}^{CF_4} = 0.55$; SF6, $k_0^{SF_6} = 1.9 \times 10^{-28}$ and $F_{cent}^{SF_6} = 0.52$, where the units of k_0 are cm⁶ moleule⁻² s⁻¹. The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were: CH4, (6.0 x 10^{-30} ; C2H6, (1.1 x 10^{-29} ; CO2, (6.5±1.8) x 10^{-30} ; CF4, (8.3±1.7) x 10^{-30} ; SF6, $(1.4 \pm 0.30) \times 10^{-29}$, with units cm⁶ molecule⁻¹ s⁻¹, and the systematic and experimental errors are given at the 2σ confidence level

References

(1) J. Phys. Chem A. 113, 113, 10241