A Comparative Theoretical study of the Kinetics and Dynamics of the Reaction of H Atoms with Ground-state and Excited O₂

Péter Szabó,¹ and <u>György Lendvay</u>^{1,2}

¹ University of Pannonia, Veszprém, Hungary

² Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy

* Corresponding author: lendvay@chemres.hu

The reaction of O_2 with H atoms is one of the most important reactions in combustion. Numerous studies are available on the reaction on the lowest potential energy surface (PES) involving ground-state, triplet O_2 . Recently the possibility of presence of electronically excited O_2 in flames has been proposed. While the reactivity of singlet O_2 proves to be much lower, in particular, towards saturated compounds, it can react faster with radicals than ground-state O_2 . As long as excited O_2 is really present in flames, it can influence the kinetics of O-atom and OH radical formation.

We have performed quasiclassical trajectory calculations on the $O_2 + H \rightarrow O + OH$ reaction using the PESs correlating with $O_2({}^{3}\Sigma_{g})$ as well as with $O_2({}^{1}\Delta_{g})$, both developed by Guo and coworkers. The excited-state reaction is exoterm by about 0.43 eV in contrast to the ground-state reaction which is 0.53 eV endoterm. There is a deep well on both PESs which corresponds to ground-state and electronically excited HO₂; this well is less deep in the excited state (2 eV below O + OH) than in the ground state (2.85 eV). In the excited state there is a potential barrier of about 0.26 eV in the entrance channel, in contrast to the barrierless entrance channel of the ground-state reaction.

According to the trajectory calculations the excitation function for the reaction starting from excited-state O_2 raises above zero at about 0.3 eV and increases almost linearly, in good agreement with the exact qunatum mechanical calculations by Guo. This reflects much larger reactivity than the ground-state cross sections having a threshold above 0.6 eV and remain much smaller than the excited-state data. For the reaction of excited O_2 the thermal rate coefficient is about 10^{-16} cm³molecule⁻¹s⁻¹ at room temperature and about 10^{-12} cm³molecule⁻¹s⁻¹ at 1500 K, the latter is two orders of magnitude larger than the respective ground-state rate value.

Comparions of the details of the dynamics will be presented.

of Sciences, Hungary