Direct detection and kinetics of NO₃ and Cl-substituted alkylperoxy radicals using cavity ringdown spectroscopy

Leah G. Dodson, Kana Takematsu, Nathan C. Eddingsaas, and Mitchio Okumura^{1,*}

¹ California Institute of Technology, Pasadena, CA, USA

* Corresponding author: mo@caltech.edu

Peroxy radicals dominate atmospheric chemistry as important reaction intermediates in the oxidation of volatile organic compounds. Biogenic alkene emissions such as isoprene and 2-methyl-3-buten-2-ol (MBO-232) react rapidly with free radicals to form β -substituted alkylperoxy radicals. We have directly detected the A-X electronic transition spectrum of NO₃- and Cl-substituted atmospherically-relevant alkyl peroxy radicals from 7000-8500 cm⁻¹ using cavity ringdown spectroscopy. Spectra of peroxy radicals formed by NO₃ and Cl radical-initiated oxidation of 2-butene, 3-methyl-1-butene, and MBO-232 are presented here with preliminary kinetic results. Kinetic rate constants of peroxy radical self-reactions and peroxy radical reactions with HO₂ and NO will be obtained by directly observing the near-infrared absorption spectrum of the peroxy radical intermediate. The preliminary Cl-substituted isoprenyl peroxy radical A-X electronic transition spectrum has also been obtained.