Experimental and theoretical investigations for the gas-phase reactions of OH radical with α -pinene and β -pinene.

Manas Ranjan Dash, and B Rajakumar^{*}

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India * Corresponding author: rajakumar@iitm.ac.in

OH radicals play an important role in the chemistry of biologically emitted volatile hydrocarbons in the troposphere. α -pinene and β -pinene are the two most abundant monoterpenes emitted in to the troposphere by coniferous trees.¹ The rate coefficients for the gas-phase reactions of OH radicals with α -pinene and β -pinene have been determined at 298 K and 800 Torr of N₂ using the relative rate method, with propylene as a reference compound. The OH radicals were generated by UV photolysis of hydrogen peroxide (H_2O_2) at 254 nm. A gas chromatograph equipped with a flame ionization detector (GC-FID) was used for quantitative analysis of the reactants. To gain a deeper insight into the reaction mechanism theoretical calculations were also carried out for these reactions. The rate coefficients of OH radical with α -pinene and β -pinene were computed using conventional transition state theory (CTST) coupled meta-hybrid density functional theory (DFT).² Structures of the reactants, transition states and products were optimized at M06-2X/6-31G* and M06-2X/6-311++G** level of theories. Energies are obtained by single-point calculation at the above structures using M06-2X/Aug-cc-pVTZ to produce the potential energy surface. Both addition and abstraction channels were explored elaborately. The theoretically computed rate coefficients were compared with experimental results. The OH-driven atmospheric lifetimes of α -pinene and β -pinene were calculated using both experimentally and theoretically determined rate coefficients.

References

Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P. A. J. Geophys. Res. 1995, 100, 8873-8892.
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.