Atmospheric Chemistry Poster: Th-Atm-27

The Kinetics of the Gas-phase Reactions of Selected Monoterpenes and Cyclo-alkenes with Ozone and the NO₃ Radical.

D.J. Stewart^{*}, <u>S.H. Almabrok</u>, J.P. Lockhart, O.M. Mohamed, D.R. Nutt, C. Pfrang and G. Marston

Department of Chemistry, University of Reading, Whiteknights, PO Box 224 Reading, RG6 6AD

The relative rate method has been used to measure the room-temperature rate constants for the gas-phase reactions of ozone and NO₃ with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ± 2 K and 760 \pm 10 Torr. The following rate constants (in units of 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹) were obtained for the reaction with ozone: methyl cyclohexene (132 ± 15) , terpinolene (1250 ± 325) , ethylidene cyclohexane (222±57), norbornene (959±249), t-butyl isopropylidene cyclohexane (1510±200), cyclopentene (546±61), cyclohexene (81.8±10.5), cyclooctene (454±45), dicyclopentadiene (1460 \pm 150) and α -pinene (95.5 \pm 9.8). For the reaction with NO₃ the rate constants obtained (in units of 10^{-12} cm³ molecule⁻¹ s⁻¹) were: methyl cyclohexene (7.91 ± 0.76) , terpinolene (46.9 ± 5.1) , ethylidene cyclohexane (4.39 ± 0.30) , norbornene (0.27 ± 0.02) , cyclohexene (0.54 ± 0.02) , cyclooctene (0.52 ± 0.02) , dicyclopentadiene (1.21 ± 0.06) and α -pinene (5.20\pm0.32). Molecular orbital energies were calculated for each alkene and the rate data are discussed in terms of the deviation from the structure-activityrelationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.