Ozone photo-dissociation - revisited

Shaun A Carl,^{1,*} Jozef Peeters,¹ Stijn Vranckx,² and Stein Van Bezouw¹

¹ Department of Chemistry, Celestijnenlaan 200F, Kaltholieke Universieit Leuven, 3001 Leuven, Belgium.

² Current address: Shock Wave Lab., RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany Corresponding author: Shaun.carl@chem.kuleuven.be

We present new, high-resolution determinations of the quantum yield of $O(^{1}D)$ production, $\Phi(O^{1}D)_{\lambda}$, in the photo-dissociation of ozone between 300 nm and 400 nm. $\Phi(O^{1}D)_{\lambda}$, is also determined as a function of temperature (200 K to 600 K) between 308 nm and 325 nm over the region associated with the vibrationally-enhanced photodissociation channel leading to $O(^{1}D) + O_{2}(a^{1}\Delta_{g})$. Quantum yield determinations at room temperature are extended beyond 325 nm to visible wavelengths over which only the spin-forbidden channel leading to $O(^{1}D) + O_{2}(X^{3}\Sigma_{g})$ is operative.

The relative yields of $O({}^{1}D)$ and total O (represented by $O({}^{3}P)$ once $O({}^{1}D)$ is quenched) are determined by chemiluminescence of respectively $CF_{2}(\tilde{A}{}^{1}B_{1})$ $CF_{2}(\tilde{\alpha}{}^{3}B_{1})$ resulting from the reactions of $O({}^{1}D)$ and $O({}^{3}P)$ with $C_{2}F_{4}$. This method proves to be very sensitive towards $O({}^{1}D)$ and $O({}^{3}P)$. Combination of both detection methods provides a highly sensitive technique for determining the $\Phi(O{}^{1}D)_{\lambda}$ of O_{3} photolysis; the major advantages are that our technique does not require any external excitation for O-atom detection nor the knowledge of the ozone absorption cross-section, laser energy, or amounts of ozone photolysed.

Accurate $\Phi(O^1D)_{\lambda}(T)$ determinations were enabled using a specially-designed temperature-graded reaction cell with parallel simultaneous detection of $O(^1D)$ at different sections (temperatures) of the reaction chamber using a series of photomultiplier tubes. The results are compared to the recent *ab initio* quantum mechanical study of the $O(^1D)$ formation in the photolysis of ozone by Grebenshchikov and Rosenwaks [1].

References (1) Grebenshchikov, S. Y.; Rosenwaks, S. J. Chem. Phys. **2010** 114, 9809-9819.