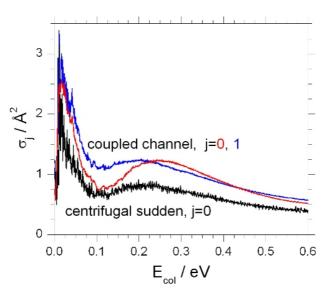
Nonadiabatic Reactions on Three Coupled PESs of CH₂ and ON₂

Paolo Defazio,¹ Pablo Gamallo,² and <u>Carlo Petrongolo</u>^{3,*}

¹ Universita' di Siena, Siena, Italy

² Universitat de Barcelona, Barcelona, Spain

³ Consiglio Nazionale delle Ricerche, Pisa, Italy


* Corresponding author: petrongolo@unisi.it

We present the nonadiabatic collision dynamics and gas kinetics of the combustion and atmospheric reactions $C({}^{1}D) + H_{2}(X {}^{1}\Sigma_{g}^{+}) \rightarrow C({}^{3}P) + H_{2}(X {}^{1}\Sigma_{g}^{+}) / CH(X {}^{2}\Pi) + H({}^{2}S)$ and $O({}^{1}D) + N_{2}(X {}^{1}\Sigma_{g}^{+}) \rightarrow O({}^{3}P) + N_{2}(X {}^{1}\Sigma_{g}^{+})$. We use our quantum theory of nonadiabatic effects in triatomics (1,2), the quantum real wavepacket method (3,4), and configuration-interaction PESs, Renner-Teller (RT), and spin-orbit (SO) couplings between the three lowest electronic states of CH₂ and ON₂. We discuss the effects of permutation-inversion symmetry rules and of Coriolis, RT, and SO couplings on reaction probabilities, cross sections, and rate constants. As an example, the figure presents the $O({}^{1}D) + N_{2}(X {}^{1}\Sigma_{g}^{+})$ SO+RT cross sections versus the collision energy, resolved on two N₂ rotational states. We see a resonance-dominated barrierless collision, reflecting the $\tilde{X} {}^{1}A'$ deep potential well, and rotational and Coriolis reactivity enhancements, both due to

 $\tilde{X}^{'}A'$ deep potential well, and rotational and Coriolis reactivity enhancements, both due to symmetry selection rules. The nonadiabatic interactions play different roles on the quenching dynamics, because the singlet-triplet SO effects are by far more important than the RT triplet ones.

References

- (1) Petrongolo, C. J. Chem. Phys. 1988, 89, 1297.
- (2) Defazio, P.; Bussery-Honvault, B.; Honvault, P.; Petrongolo, C. J. Chem. Phys. 2011, 135, 144308.
- (3) Gray, S. K; Balint-Kurti, G.G.; J. Chem. Phys. 1998, 108, 950.
- (4) Meijer, A.J.H.M.; Goldfield, E.M.; Gray, S.K.; Balint-Kurti, G.G. Chem. Phys. Lett. **1998**, 293, 270.

