Oxalyl Chloride, (COCl)₂, UV Spectrum and Cl Quantum Yields at 193, 248 and 351 nm, and the Kinetics of the ClCO + M Reaction

Buddhadeb Ghosh,^{1,2,*,†} Dimitrios K. Papanastasiou,^{1,2} and James B. Burkholder¹

¹ Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder CO 80305.

² Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder CO 80309.

[†]Current address: Water and Air Group, Sustainability Technologies, Research & Development, ConocoPhillips. Bartlesville, OK 74004

* Corresponding author: Bud.Ghosh@conocophillips.com

Oxalyl chloride, $(COCl)_2$, is commonly used in laboratory studies as a photolytic precursor of Cl atoms. Here, we report the UV-Vis absorption spectrum of $(COCl)_2$ between 200 and 450 nm at 298 K measured using diode array spectroscopy and the Cl quantum yield, $\Phi(\lambda)$, in the pulsed laser photolysis of $(COCl)_2$ at 193, 248, and 351 nm measured at 298 K using atomic resonance fluorescence. Oxalyl chloride UV photolysis occurs via an impulsive three-body dissociation mechanism into CO, Cl, and ClCO*

	$(COCl)_2 + hv$	\rightarrow	$ClCO^* + Cl + CO$	(1)
where excited ClCO,	, ClCO*, can subseq	uently dis	ssociate or stabilize	
	ClCO*	\rightarrow	Cl + CO	(2a)
		\rightarrow	CICO	(2b)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				-

ClCO is thermally unstable under the temperatures and pressures of our experiments

ClCO + M	\rightarrow	Cl + CO + M	(3)
----------	---------------	-------------	-----

leading to the formation of a Cl atom, which was resolvable in the Cl atom temporal profile. At 193 nm, $\Phi(\lambda)$ was found to be 2.07 ± 0.37 and consistent with a branching ratio for channel 2a greater than 0.9. At 248 nm, a branching ratio of 0.80 for channel 2a was determined, while the overall Cl atom quantum yield, following the completion of reaction 3, was found to be 1.98 ± 0.26, independent of bath gas pressure (15-70 Torr). The photolysis quantum yield at 351 nm was pressure dependent suggesting the involvement of a long-lived excited electronic state. In the low-pressure limit the overall Cl atom quantum yield was 2 ± 0.22 . The $\Phi(\lambda)$ measurements and interpretation will be discussed. The thermal decomposition rate coefficient of ClCO was measured as part of this work over the 13-128 Torr pressure range at temperatures between 253 and 298 K with He and N₂ bath gas. Our results will be compared with results from previous studies.

UV-Vis spectrum of oxalyl chloride.

Stern-Volmer plot for the 351 nm photolysis of oxalyl chloride.