Experimental Methods and Applications Poster: Tu-Exp-1

The Kinetics of Gas-phase Reactions of Selected Monoterpenes and Cycloalkenes with Ozone and Nitrate Radicals Studied by Headspace Solid-Phase Microextraction (HS-SPME)

S. Almabrok, G. Marston and C. Pfrang
Department of Chemistry, University of Reading, Reading, Berkshire, RG6 6AD, UK
Keywords: Relative rate technique, HS-SPME, Monoterpenes.
Presenting author email: s.h.almabrok@reading.ac.uk

Oxidation of volatile organic compounds in the troposphere is primarily initialised by hydroxyl radicals, ozone, and nitrate radicals, NO_{3}, with the dominant degradation route being determined by the relative concentrations of the oxidants as well as the rate coefficients for the reactions of the oxidised compounds with these species ${ }^{(1)}$. In this study, a novel variant of the relative rate method has been employed to measure the room-temperature rate coefficients for the gas-phase reactions of ozone and NO_{3} with selected monoterpenes and cycle-alkenes with structural similarities to monoterpenes. Measurements were carried out at $298 \pm 2 \mathrm{~K}$ and 760 ± 10 Torr. The experimental results were obtained by combining headspace solid-phase microextraction (HS-SPME) sampling with gas chromatography-mass spectrometry (GC-MS) detection. The experimental set-up is depicted in Fig.1. Fig. 2 (a) illustrates the HS-SPME calibration for α-pinene while Fig. 2 (b) gives an example of a kinetic plot used for derivation of the rate coefficients.

Figure.1: Experimental set up for combining HS-SPME with GC-MS analysis.

Figure 2 (a \& b): (a): Calibration of α-pinene using HS-SPME and (b) Relative rate plot reacting O_{3} with α-pinene vs. cyclohepten (Reference compound).

References.

1- B.J. Finlayson-Pitts and J.N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, 2000.

