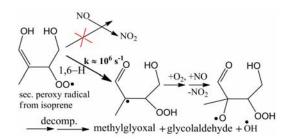
Unusually Fast 1,6-H Shifts of Enolic Hydrogens in Peroxy Radicals: Formation of the First-Generation C₂ and C₃ Carbonyls in the Oxidation of Isoprene


<u>Thanh Lam Nguyen</u>,^{2,1} and Jozef Peeters^{1,*}

* Corresponding author: Jozef.Peeters@chem.kuleuven.be

In a theoretical investigation using the CBS-OB3 // UB3LYP/6-31+G** method supported by higher-level computations such as CBS-QB3 // UQCISD/6-31+G**, the 1,6-H shifts of the enolic hydrogen in peroxy radicals of the type Z-HO-CH=CH-CH₂-OO[•] are found to face exceptionally low energy barriers of only about 11 kcal $mol^{-1} - i.e.$ 6 to 9 kcal mol^{-1} lower than the barriers for similar shifts of alkanic hydrogens – such that they can proceed at unequaled rates of order 10^5 to 10^6 s⁻¹ at ambient temperatures. The unusually low barriers for enolic 1,6-H shifts in peroxy radicals, characterised here for the first, are rationalized. As cases in point, the secondary peroxy radicals Z-HO-CH=C(CH₃)-CH(OO[•])-CH₂OH (Case A) and Z-HO-CH=CH- $C(CH_3)(OO^{\bullet})$ -CH₂OH (Case B) derived from the *primary* Z- δ -hydroxy-peroxy radicals in the oxidation of isoprene, are predicted to undergo 1.6-H shifts of their enolic hydrogens at TSTcalculated rates in the range 270 to 320 K of $k(T)_{\rm A} = 5.4 \times 10^{-4} \times T^{5.04} \times \exp(-1990/T) \,{\rm s}^{-1}$ and $k(T)_{\rm B} = 109 \times T^{3.13} \times \exp(-3420/T) \,{\rm s}^{-1}$ respectively, *i.e.* $2.0 \times 10^6 \,{\rm s}^{-1}$ and $6.2 \times 10^4 \,{\rm s}^{-1}$, respectively, at 298 K, far outrunning in all relevant atmospheric and laboratory conditions their reactions with NO proposed earlier as dominant pathways.¹ These fast enolic-H shifts provide an explanation for the first-generation production of methylglyoxal + glycolaldehyde, and glyoxal + hydroxyacetone in isoprene oxidation at high-NO levels, recently determined by several groups.² However, under moderate- and low-NO atmospheric conditions, the fast interconversion and equilibration of the various thermally labile, initial peroxy conformers / isomers from isoprene and the isomerisation of the initial Z- δ -hydroxy-peroxy radicals, both recently proposed by us,³ are expected to substantially reduce the yields of the small carbonyls at issue.

References

- (1) Dibble, T.S. J. Phys. Chem. A 2004, 108, 2199-2207.
- (2) Galloway, M.M.; et al. Atmos. Chem. Phys., 2011, 11, 10779-10790; and references therein
- (3) Peeters, J.; Nguyen, T. L.; Vereecken, L. Phys. Chem. Chem. Phys. 2009, 11, 5935-5939.

¹ University of Leuven, Heverlee, Belgium

² University of Texas at Austin, Austin, TX, USA