Kinetic study on the reaction of CF₃CH=CH₂ with Cl atoms in a smog chamber

María Rosario Martín-Luengo,¹ Bernabé Ballesteros,^{1,2*} Thomas M. Townsend,² <u>Elena Jiménez</u>,² and José Albaladejo^{2*}

¹ Instituto de Combustión y Contaminación Atmosférica. Universidad de Castilla – La Mancha. Camino Moledores s/n, 13071 Ciudad Real. Spain.
² Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla – La

² Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla – La Mancha. Avenida Camilo José Cela, s/n. 13071 Ciudad Real. Spain.

* Corresponding authors: Jose.Albaladejo@uclm.es, Bernabe.Ballesteros@uclm.es

Recognition of the adverse environmental impact of chlorofluorocarbons (CFCs) released into the atmosphere [1,2] has led to an international effort to replace these compounds with environmentally acceptable alternatives. Saturated hydrofluorocarbons (HFCs) have become widely used CFC replacements. Unsaturated hydrofluorocarbons are a class of compounds, which are potential replacements for CFCs and saturated HFCs in air conditioning units.

In this work, the rate coefficient, k_{Cl} , for the reaction of CF₃CH=CH₂ with Cl atoms at room temperature and 720 Torr of air is measured using a relative kinetic technique:

$$Cl + CF_3CH = CH_2 \rightarrow Products$$
 k_{Cl} (1)

Chlorine atoms are generated by UV photolysis of Cl_2 and the loss of $CF_3CH=CH_2$ and the reference compound (propene or 1,3-butadiene) and are monitored by both FTIR and GC-FID.

Two kinetic studies of reaction (1) were found in the literature. Sulbaek Andersen et al. [3] reported a relative rate coefficient of $(9.07 \pm 1.08) \times 10^{-11}$ cm³molecule⁻¹s⁻¹ in 700 Torr of N₂ or N₂/O₂ at 296 ± 1 K. These authors also used FTIR spectroscopy as a detection technique. Takahashi et al. [4] employed the pulsed laser photolysis/ vacuum ultraviolet laser-induced fluorescence techniques to study the kinetics of reaction (1) at low pressure (9.1 Torr of CF₄) at 295±2 K. The absolute k_{Cl} reported by Takahashi et al., $(4.49\pm0.64) \times 10^{-11}$ cm³molecule⁻¹s⁻¹, was found to be half of that reported by Sulbaek Andersen et al. [3].

Additionally, in this work the products of the reaction are investigated by GC-MS and SPME. The atmospheric implications of the Cl reactivity are also discussed in terms of its lifetime and detected products.

References

- (1) Molina, M.J., Rowland, F.S., *Nature* 1974, 249, 810-812.
- (2) Farman, J.D., Gardiner, B.G., Shanklin, J.D., Nature 1985, 315, 207-210.
- (3) Sulbaek Andersen, M.P., Nielsen, O.J., Toft, A., Nakayama, T., Matsumi, Y., Waterland, R.L., Buck, R.C., Hurley, M.D., Wallington, T.J., *J. Photochem. Photobiol. A: Chem.* 2005, 176, 124-128.
- (4) Takahashi, K., Iwasaki, E., Nakayama, T., Matsumi, Y., Wallington, T.J., *Int. J. Chem. Kinet.* **2007**, 39, 328-332.