Kinetic studies of the OH(X²Π) and O(³P) initiated reactions with selected short chain iodoalkanes

Shaoliang Zhang,^{1,2,3} <u>Rafal S. Strekowski</u>,^{1,2,*} Anne Monod,^{1,2} Sasho Gligorovski,^{1,2} Henri Wortham,^{1,2} Loïc Bosland,² and Cornelius Zetzsch³

¹ Aix-Marseille Univ., Laboratoire Chimie Environnement, 13331 Marseilles cedex 03, France

³ Institut de Radioprotection et de Sûreté Nucléaire, DPAM / SEMIC / LETR, Cadarache, France

⁴ Atmos. Chem. Research Lab, BAYCEER, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, D-95448 Bayreuth, Germany

A Flash Photolysis–Resonance Fluorescence (FP-RF) technique was used to investigate the kinetics of the OH(X²Π) radical initiated reactions with selected iodoalkanes (RI), namely CH₃I, CH₂I₂, C₂H₅I, n-C₃H₇I, iso-C₃H₇I, CHI₃ and O(³P) radical initiated reactions with selected RI, namely CHI₃ and C₂H₅I. The reactions of OH(X²Π) radicals with RI were studied over the temperature range 295 – 390 K and pressure around 200 Torr of He.¹⁻³ The reaction of the OH(X²Π) radical with CHI₃ was studied at *T*=298K only. The reactions of O(³P) radical with CHI₃ and C₂H₅I were studied over the temperature range 296 – 373K in 14 Torr of He. The experiments involved time-resolved RF detection of OH (A²Σ⁺→X²Π transition at λ=308 nm) and of O(³P) (λ=130.2, 130.5, and 130.6 nm) following FP of the H₂O/He, H₂O/RI/He, O₃/He and O₃/RI/He mixtures. The OH(X²Π) and O(³P) radicals were produced by FP in the vacuum-UV at wavelengths λ >120 nm using a Xe flash lamp. Measured rate coefficients for the reactions of OH(X²Π) and O(³P) radicals with RI are described by the following Arrhenius expressions (units are cm³molecule⁻¹s⁻¹):

 $\begin{aligned} k_{\rm OH+CH_3I} &= (4.1 \pm 2.2) \times 10^{-12} \exp[(-1240 \pm 200) \text{K}/T] \\ k_{\rm OH+CH_2I_2} &= (4.2 \pm 0.5) \times 10^{-11} \exp[(-670 \pm 20) \text{K}/T] \\ k_{\rm OH+CHI_3} &= (1.6 \pm 0.1) \times 10^{-11} \\ k_{\rm OH+C_2H_5I} &= (5.6 \pm 3.2) \times 10^{-12} \exp[(-830 \pm 90) \text{K}/T] \\ k_{\rm OH+n-C_3H_7I} &= (1.7 \pm 0.9) \times 10^{-11} \exp[(-780 \pm 90) \text{K}/T] \\ k_{\rm OH+iso-C_3H_7I} &= (7.6 \pm 3.7) \times 10^{-12} \exp[(-530 \pm 80) \text{K}/T] \\ k_{\rm O+CHI_3} &= (1.8 \pm 2.8) \times 10^{-12} \exp[(+430 \pm 260) \text{K}/T] \\ k_{\rm O+C_2H_5I} &= (2.0 \pm 1.4) \times 10^{-11} \exp[(+140 \pm 110) \text{K}/T] \end{aligned}$

The implications of the reported kinetic results for understanding the degradation mechanisms of iodoalkanes in case of a nuclear power plant accident are discussed. Further, the OH radical and O atom attacks on RI, namely OH-addition, H-atom and I-atom abstraction reaction channels, are discussed.

References

S. Zhang, R. Strekowski, L. Bosland, A. Monod, Cornelius Zetzsch, Kinetic study of the reaction of OH with CH₃I revisited, *Int. J. Chem. Kinet.*, **2011**, 43, 547-556
S. Zhang, R. Strekowski, L. Bosland, A. Monod, Cornelius Zetzsch, Kinetic study of the reaction of OH with CH₂I₂, *Phys. Chem. Chem. Phys.*, **2011**, 13, 11671-11677
S. Zhang, R. Strekowski, L. Bosland, A. Monod, Cornelius Zetzsch, Temperature-Dependent Kinetics Study of the Reactions of OH with C₂H₅I, n-C₃H₇I and iso-C₃H₇I, *submitted to J. Phys. Chem. A*, **2012**

Tel: (+33) (0)4 13 55 10 40, Fax (+33) (0)4 13 55 10 60, E-mail: rafal.strekowski@univ-amu.fr

² CNRS, FRE 3416, 13331, Marseilles cedex 03, France