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Recent experimental studies1 by the Continetti group have concluded that the barrier between 
HOCO and the dissociated products H+CO2 is considerably narrower than that represented in 
previously available potential energy surfaces (PESs).2  We report here a new global PES for the 
HOCO system as well as additional electronic structure calculations along a minimum energy 
path (MEP) of the title reaction channel and initial calculations of the decay of bound HOCO 
through the barrier to products H+CO2.   

The highest level electronic structure calculations are focused on the reaction path. Calculations 
at the full-valence MRCI(+Q)/CBS level produce excellent agreement with known 
thermochemistry. Fortuitously close agreement is also obtained with the much more affordable 
CASPT2/avdz method using the more restrictive (13e,11o) active space. Harmonic frequencies 
were computed along the MEP in addition to a cubic force field expanded at the TS.  

At the UCCSD(T)-F12b/AVTZ level of electronic structure calculations, a global PES has been 
developed Guo and coworkers.3 It also shows a significantly narrower barrier than previous 
PESs.  

The reaction path is used to calculate the rate of decay of cis-HOCO through tunneling by a 
variety of methods as found in POLYRATE4 and as recently developed by the Barker-Stanton 
groups.5 Both canonical and microcanonical rate constants have been computed using these two 
approaches and significant tunneling has been found. In addition, the H/D kinetic isotope effects 
have been obtained. Results will be contrasted with the experimental studies. 
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