Mario Molina Tribute SessionOralWednesday 3:40 - 4:00

Direct Measurement of the reaction of Criegee Intermediates with SO₂

<u>Carl J. Percival</u>,¹ Oliver Welz,² Arkke J. Eskola,² John D. Savee,² David L. Osborn,² Dudley E. Shallcross,³ and Craig A. Taatjes.²

¹School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK

²Combustion Research Facility, Sandia National Laboratories, 7011 East Ave., MS 9055, Livermore, California 94551 USA.

³School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.

* Corresponding author: carl.percival@manchester.ac.uk

Carbonyl oxides, known as "Criegee intermediates" after Rudolf Criegee, who proposed their participation in ozonolysis,¹ are important species in tropospheric chemistry. Most carbonyl oxides in the troposphere are produced by ozonolysis, but other tropospheric reactions can also produce Criegee intermediates.^{2, 3} However, until recently^{2, 4} no Criegee intermediate had been observed in the gas phase, and information about the reactivity of Criegee intermediates in gas-phase ozonolysis or in the troposphere have relied on indirect determinations.^{5, 6}

In this work, the reactions of the two simplest Criegee intermediates, CH_2OO and CH_3CH_2OO with SO_2 have been measured by laser photolysis / tunable synchrotron photoionization mass spectrometry. Diiodomethane and Diiodoethane photolysis produces RI radicals, which react with O_2 to yield ROO + I, wher R = CH₂ or CH₃CH₂. The Criegee intermediates are reacted with a large excess of SO₂ and both the disappearance of Criegee intermediates and the formation of reaction products are observed by time-resolved

photoionization mass spectrometry. Figure 1 shows a second order plot for the reaction of CH₃CH₂OO with SO₂ The final analysis yields rate coefficients at 298 K (and 4 Torr) of $(3.9 \pm 0.7) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ for CH₂OO + SO₂ and of $(2.4 \pm 0.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ for CH₃CH₂OO + SO₂.

The direct determinations of the rate constants for CH_2OO and CH_3CH_2OO with SO_2 , are considerably higher than previous estimates. Placing the present results into a tropospheric chemistry model⁷ implies a substantial role of Criegee intermediates in sulfate chemistry. Oxidation of SO_2 by CBs will lead to SO_3 that will from H_2SO_4 rapidly on reaction with water. The production of H_2SO_4 via Criegee radical reaction will be at least as important as the OH radical production route. It is well known that sulfuric acid is a key component in the secondary particle formation in the atmosphere and thus this new route to form sulfuric acid could have a significant impact on aerosol formation in the atmosphere.

References

- (1) Criegee, R.; Wenner, G. Liebigs. Ann. Chem. 1949, 564, 9.
- (2) Welz, O. et al., *Science* **2012**, 335, 204.
- (3) Asatryan, R.; Bozzelli, J.W. Phys. Chem. Chem. Phys. 2008, 10, 1769.
- (4) Taatjes, C. A. et al., J. Am. Chem. Soc., 2008, 130, 11883.
- (5) Johnson, D.;. Marston, G. Chem. Soc. Rev. 2008, 37, 699.
- (6) Donahue, N. M. et al., *Phys. Chem. Chem. Phys.* 2011, 13, 10848.
- (7) Archibald, A.T. et al., Atmos. Chem. Phys. 2010, 10, 8097.