Chemical Activation in the Product Yields of the OH/C₂H₂/O₂ system: Yields as a function of oxygen and Temperature

<u>James Lockhart</u>¹ Mark Blitz,¹ Dwayne Heard,¹ Michael Pilling,¹ Robin Shannon,¹ P. Seakins,¹ David Glowacki,² and Struan Robertson³

¹ University of Leeds, UK; ² University of Bristol, UK; ³ Accelrys, Science Park, Cambridge , UK. Corresponding author: bmb0jpal@leeds.ac.uk

Acetylene, C_2H_2 , is an important atmospheric marker for anthropogenic emissions and biomass burning. Atmospheric removal of acetylene is dominated by addition with OH. The adduct subsequently reacts with O_2 via a barrierless association reaction along two product pathways (Scheme 1).¹⁻³ The kinetics of the OH + C_2H_2 reaction have been studied by

monitoring OH decay under pseudo-first-order conditions using both N₂ and O₂/N₂ bath gas mixtures. Experimental conditions are controlled so that the OH + C₂H₂ reaction rapidly recycles in the presence of oxygen. Monitoring OH decay in the presence, k_{O2} , and absence, k_{N2} , of O₂ allows the OH yield (Φ_{OH}) to be determined directly via $\Phi_{OH} = 1 - \frac{k_{O2}}{k_{N2}}$. Φ_{OH} shows no dependence on total pressure but does depend on bath gas composition (Figure 2). These

observations can be rationalized as follows. OH adds to C_2H_2 to produce either a *cis* or *trans* conformer, with formation of either considered equally probable. The adducts form with ~130 kJ mol⁻¹ excess energy and in N₂ become thermalized. The more stable *trans* adduct, leading to OH regeneration, is preferentially populated under thermal conditions. The dependence on f_{O2} is related to how much thermalization has occurred before the adduct has encountered O₂: high f_{O2} means reaction before the adduct is thermalized *- chemical activation* - where at the limit of pure O₂, the conformers react with O₂ where the populations are close to equal and hence Φ_{OH} ~0.5; at low f_{O2} the adduct distribution is close to thermal equilibrium, resulting in an increased Φ_{OH} . Temperature dependent Φ_{OH} have also been observed, resulting from enhanced *trans* populations as the temperature is lowered (Figure 3). In the presentation we will discuss the role of chemical activation in determining product distributions in what has mainly been considered a thermal environment, atmospheric implications, theoretical modeling of the system and the extension to higher alkynes.

References

(1) Schmidt, V.; Becker, K. H. et al. *Ber. Bunsen-Ges. Phys. Chem. Chem. Phys.* **1985**, *89*, 321. (2) Hatakeyama, S.; Washida, N.; Akimoto, H. J. Phys. Chem. **1986**, *90*, 173. (3) Glowacki, D. R.; Pilling, M. J. *Chemphyschem* **2010**, *11*, 3836.

Figure 3. Temperature dependence of Φ_{OH} from 212-498 K under 10 Torr total pressure; $f_{02} = 0.01$ (black squares), $f_{02} = 0.2$ (red circles) and $f_{02} = 0.9$ (blue triangles)