

Atmospheric Emissions and Reactions Observed from Megacities to Marine Areas

https://csl.noaa.gov/projects/aeromma/

NOAA

New insights into the marine sulfur cycle and its feedback on climate

Veres et al., PNAS 2020 Novak et al., PNAS 2021

Understanding urban air quality using aircraft and geostationary satellites

McDonald et al., Science 2018

NOAA CSL Points of Contact for 2023 Field Work

AEROMMA Marine Contacts

Patrick Veres (patrick.veres@noaa.gov) Andrew (Drew) Rollins (andrew.rollins@noaa.gov)

AEROMMA Megacity Contacts

Carsten Warneke (carsten.warneke@noaa.gov) Rebecca Schwantes (rebecca.schwantes@noaa.gov)

AEROMMA Satellite Liaison

Brian McDonald (brian.mcdonald@noaa.gov)

AEROMMA Ground Site Coordination

Chelsea Stockwell (chelsea.stockwell@noaa.gov)

AEROMMA Programmatic Liaison

Steven Brown (steven.s.brown@noaa.gov)

VCPs are in cities big and small (Source Apportionment)

The fraction of VCP emissions increases with population density. Even in a place as small as Boulder, VCP emissions are nearly as abundant as mobile source VOCs

Based on mobile lab measurements *Gkatzelis et al. (2021), ES&T*

WRF-Chem model: VCPs Needed to Explain Ozone

Ozone during heatwave, July 2, 2018

0 max \circ 8-h O₃ (ppb) 2,002,404,202,000,000,000,000,000 VOC sensitivity analyses at ozone maximum

Key- Significant fraction of ozone attributed toTakeawaysVCPs, which are not well quantified

Learn more: Coggon et al. (2021), PNAS

Box model: Attribution of ozone

Ozone during heatwave, July 2, 2018

Key

Takeaways

- Most VCP sectors contribute to ozone formation

Breakdown of VCP ozone by category

Breakdown of VCP ozone by functionality

Learn more: Coggon et al. (2021), PNAS

Four Different Satellite Products

The four different satellite instruments clearly do not agree well on their observations on how NO_2 changed due to COVID lockdown measures.

J. He (NOAA CSL)

AEROMMA Urban Science Goals

- 1. Determine organics emissions and chemistry, including of understudied VCPs and cooking in the most populated urban areas in the United States
- 2. Determine reactive nitrogen emissions and chemistry in major urban corridors (i.e., urban core to suburban and outlying rural areas) to understand the current importance of combustion and non-combustion sources
- 3. Determine co-benefits between managing air quality and the carbon cycle
- 4. Provide observations for proving and reducing risk of TEMPO, JPSS, and GOES-R science and near realtime trace gas and aerosol products
- 5. Provide field observations for evaluating NOAA's next generation weather-chemistry models and chemical data assimilation of atmospheric composition satellite data
- 6. Provide observations from heavy-lift in-situ aircraft, airborne remote sensing, and ground-based networks for geostationary trace gas (NO₂, HCHO, O₃) and aerosol (AOD and ALH) products evaluation

AEROMMA DC-8 Instrument Payload

(Tentative, September 2022)

Majority of instruments from NOAA CSL:

Gas phase: GHG, NO_x, VOCs, halogens, sulfur, etc.

Aerosol phase: number, size, mass, composition, and optical properties

AEROMMA DC-8 Instrument Payload

Species Measured	Technique	PI-name	Institution
	Gas phase measurements		
O ₃ , NO, NO ₂ , NOy, 15N isotopes	NOyO ₃ , ¹⁵ N	Andrew Rollins, Steven Brown	NOAA CSL
HPMTF, PANs, HONO, OVOCs,	lodide ToF-CIMS (I ⁻ CIMS)	Patrick Veres	NOAA CSL
$CINO_2$, organic nitrogen			
CO, CO ₂ , CH ₄ , H ₂ O	Cavity Enhanced Absorption (LGR+Picarro)	Jeff Peischl	NOAA CSL
CO, CO ₂ , CH ₄ , H ₂ O	DLH, DACOM	Glenn Diskin	NASA Langley
SO ₂	Laser Induced Fluorescence	Andrew Rollins	NOAA CSL
OCS	Cavity Enhanced Absorption	Andrew Rollins	NOAA CSL
NH ₃	QC-TILDAS (QCLS NH ₃)	Ilana Pollack	CSU
CH_3COCHO , $CHOCHO$, NO_2 , UV aerosol extinction	Cavity Enhanced Spectrometer (ACES)	Carrie Womack	NOAA CSL
Speciated hydrocarbons and OVOCs	H3O+ Vocus ToF-CIMS (PTR-ToF)	Carsten Warneke	NOAA CSL
C_2 - C_{10} Alkanes, C_2 - C_4 Alkenes, C_6 - C_9 Aromatics, C_1 - C_5 Alkylnitrates, etc.	Whole Air Sampling (iWAS)	Jessica Gilman	NOAA CSL
Hydro- and halocarbons	Portable Flask Package (PFP)	John Miller	NOAA GML
Formaldehyde (HCHO)	Laser Induced Fluorescence (ISAF)	Jennifer Kaiser	Georgia Tech
Highly Oxygenated VOCs	NH4+ Vocus ToF-CIMS (NH4+CIMS)	John Liggio	ECCC Canada
OH reactivity	Direct OH loss rate by LP–LIF (OHR)	Hendrik Fuchs	FZ Juelich
H_2O_2 , organic peroxides, organic acids, isoprene oxidation products, etc.	CalTech-CIMS (CT-CIMS)	Paul Wennberg	CalTech
	Aerosol measurements (physical/optical/chemical)		
Bulk aerosol composition, HNO ₃	Filter sampling and mist chamber (PiLS-IC)	Amy Sullivan	CSU
BrC	Spectro-photometer (BrC PiLS)	Rebecca Washenfelder	NOAA CSL
Aerosol absorption and extinction at multiple wavelengths and RH	Cavity ringdown extinction and photoacoustic absorption	Charles Brock	NOAA CSL
	spectrometers (AOP)		
Aerosol scattering phase function at UV and visible (blue) wavelengths	Laser Imaging Nephelometer (Li-Neph)	Dan Murphy	NOAA CSL
Aerosol number density, size dist., and physical properties, CCN	Particle counters, nephelometers, etc. (UHSAS, CMASS, NMASS, CCN) (AMP)	Charles Brock	NOAA CSL, NASA LaRC
BC concentration, size, mixing state	Humidified-Dual SP2	Joshua Schwarz	NOAA CSL
Submicron aerosol composition	Aerosol mass spectrometer (HR-AMS)	Ann Middlebrook	NOAA CSL
Submicron aerosol composition	Vocus Inlet for Aerosols with NH4+ CIMS detection (VIA-NH4+CIMS)	Carsten Warneke	NOAA CSL
Single particle composition	PALMS	Daniel Cziczo	Purdue
	Radiation		
Zenith/nadir solar actinic flux and photolysis frequencies	4π-sr spectroradiometry (CCD)	Birger Bohn	FZ Juelich

AEROMMA DC-8 Deployment Schedule (Tentative, September 2022)

		A	pr	il		
Su	М	Tu	w	Th	F	Sa
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	Υ.		1		20	

		I	Na	y					
Su	М	Tu	W	Th	F	Sa	Su	М	Tu
	1	2	3	4	5	6			
7	8	9	10	11	12	13	4	5	6
14	15	16	17	18	19	20	11	12	13
21	22	23	24	25	26	27	18	19	20
28	29	30	31			-1.	25	26	27

2022

		J	un	e		Î
Su	м	Tu	W	Th	F	Sa
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

Integration Palmdale config+testflights Palmdale Marine Palmdale SARP Palmdale Urban Palmdale Urban Dayton De-Integration Palmdale May – June: >2 weeks marine flights

Mid June: 1 week NASA SARP flights coordinated with STAQS

June-July: ~3 weeks Break

July – August: >5 weeks urban flights, east coast midwest, coordination with other airborne assets (STAQS, CUPIDS, GOTHAAM, ground sites)

	-		lul	у	5		
Su	М	Tu	W	Th	F	Sa	Su M
						1	h
2	3	4	5	6	7	8	6 7
9	10	11	12	13	14	15	13 14
16	17	18	19	20	21	22	20 21
23	24	25	26	27	28	29	27 28
30	31						

Au	Igu	Ist				S	ep	ten	nb	er	
Tu	W	Th	F	Sa	Su	М	Tu	W	Th	F	S
1	2	3	4	5	1					1	3
8	9	10	11	12	3	4	5	6	7	8	9
15	16	17	18	19	10	11	12	13	14	15	1
22	23	24	25	26	17	18	19	20	21	22	2
29	30	31			24	25	26	27	28	29	3

AEROMMA DC-8 Alternative Schedule

(Dependent on TEMPO Launch)

		A	pr	il		
Su	М	Tu	W	Th	F	Sa
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	2	1	1		5	

		N	Mag	y					J	u
Su	М	Tu	W	Th	F	Sa	Su	м	Tu	W
	1	2	3	4	5	6				
7	8	9	10	11	12	13	4	5	6	7
14	15	16	17	18	19	20	11	12	13	14
21	22	23	24	25	26	27	18	19	20	21
28	29	30	31			-11	25	26	27	28

2022

		J	un	e		Ĩ
Su	м	Tu	w	Th	F	Sa
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

Integration Palmdale config+testflights Palmdale Marine Palmdale SARP Palmdale **Urban Palmdale Urban Dayton De-Integration Palmdale**

May – June: >2 weeks marine flights

Mid June: 1 week NASA SARP flights coordinated with STAQS

June-July: 4 weeks Break

August: >5 weeks urban flights, east coast midwest, coordination with other airborne assets (STAQS, CUPIDS, GOTHAAM, ground sites)

			lul	у		
Su	М	Tu	W	Th	F	Sa
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31	1				

		Au	Igu	ıst				S	ep	ten	nb	er	
Su	М	Tu	W	Th	F	Sa	Su	М	Tu	W	Th	F	S
		1	2	3	4	5						1	2
6	7	8	9	10	11	12	3	4	5	6	7	8	9
3	14	15	16	17	18	19	10	11	12	13	14	15	1
20	21	22	23	24	25	26	17	18	19	20	21	22	2
27	28	29	30	31			24	25	26	27	28	29	3

Work in progress: Flight Planning

- Tier 1: Los Angeles ~3 flights + SARP New York (~4 flights) Chicago (~4 flights)
- Tier 2: Toronto (~3 flights)
- Tier 3: Houston (up to 1 flight) Atlanta (up to 1 flight)

Local tim

We thank

NOAA NESDIS

for supporting AEROMMA2023

NOAA CHEMICAL SCIENCES

