Instrument Team Presenters: GHG

Teresa Campos: GOTHAAM

NCAR Facility Measurements of CO, CO₂ & CH₄

Configuration and Performance Expectations

AGES Meeting September 27-29, 2022

NCAR

GOTHAAM CO, CO₂ & Methane Measurement Configuration

Instruments:	Picarro G2401-m CO ₂ , CO, methane and water vapor Wavelength-scanned CRD spectrometer Default 140-torr cavity pressure configuration Aero-Laser AL5002 CO			
	Vacuum UV resonance fluorescence method Excitation: 151 ± 5 nm and emission: 170 – 200 nm			
Calibrations:	1-2 times hourly, coordinated with NO _x and O ₃ in situ sensors Traceable to WMO network maintained by NOAA GML CCGG			
Inlet:	Unheated solid strut HIMIL, dedicated Perpendicular pick-off with an aft-facing 45 degree bevel cut ¼″ i.d. stainless steel tubing			
Data:	Preliminary field data will be included in RAF LRT netcdf files, within 24 hrs of flight Final quality data submitted in ICARTT format within 6 months of project end			

Performance Specifications

	Time Res	Measurand	LLOD	Precision	Uncertainty
Picarro G2401-m : (Default configuration)	1.3-2 s	CO ₂ (µmol/mol) CH ₄ (nmol/mol) CO (nmol/mol) H ₂ O (µmol/mol)	0.1 3.0 3.0 4.0	(1-min,1 σ) 0.02 0.2 3.0 4.0	(± 2 σ) ± 0.1 μmol/mol ± 1.6 nmol/mol ± 0.1% ± 5%
Aero-Laser AL5002:	2 s	CO (nmol/mol)	2.0	(1-sec,1 σ) 1.6	(± 2 σ) 1.6 ± 3%

Colm Sweeny: CUPIDS

ECO Campaign

Aircraft measurements from Washington DC to Boston

Jeff Peischl: AEROMMA/FROG-NY

NOAA LGR/GHG on the NASA DC-8 measuring CO, N₂O, CO₂, CH₄, C₂H₆, & O₃ and NOAA LGR at FROG-NY measuring CO, H₂O (& N₂O)

Jeff Peischl Instrument PI CIRES/NOAA

Kristen Zuraski CIRES/NOAA

assistants pending

SI NOAA CHEMICAL SCIENCES LABORATORY

Instruments

- Los Gatos Research $N_2O/CO/H_2O$ analyzer, modified for flight similar to the one flown during FIREX-AQ, but with a **better N_2O measurement**
- Picarro CO₂/CH₄/CO/H₂O analyzer, with an option for *low cavity pressure* mode allowing for measurements to the top of the DC-8 vertical profiles
- Aerodyne C_2H_6 analyzer, for fast C_2H_6 measurements
- single channel O₃ chemiluminescence (see Rollins/Waxman NOyO3)
- LGR CO/H₂O/(N₂O) analyzer at flux tower in New York City for FROG-NY

Science Goals

- Quantifying CH₄ emissions from major North American cities
 - C₂H₆ is necessary to distinguish natural gas emissions from microbial sources (landfills, wastewater treatment)
- Critically evaluating CO₂, CO, and CH₄ emissions inventories for megacities
- Continuing O_3 eddy covariance flux analysis over the ocean (building on ATom analysis)

Drew Gentner: NYC-METS

Greenhouse and other trace gas measurements at NYC-METS

Mia Tran Graduate Researcher Yale

NOAA

Paul Moon Undergraduate Researcher Yale Catelynn Soong Undergraduate Researcher Yale

Rob Roscioli Instrument PI Aerodyne Andrew Lambe NYC-METS PI Aerodyne

Drew Gentner NYC-METS PI Yale

Contact: drew.gentner@yale.edu; lambe@aerodyne.com

Aerodyne Research Yale ENVIRON

GHG and trace gas measurements at the Manhattan Site as part of NYC-METS

- High resolution IR spectrometer .
- Operation at 10 Hz
- Time response < 0.1 s
- 2203 cm⁻¹ •
 - CO: 150 ppt (1 s)
 - N₂O: 100 ppt
- 2998 cm⁻¹ •
 - CH₄: 500 ppt
 - C_2H_6 : 50 ppt

22:24:35

CO (ppb)

N₂O (ppb)

22:24:10 7/21/2022

LiCOR 7000 (High-resolution CO_2 , H_2O)

- Non-dispersive IR
- Continuous reference cell
- Operation at 4Hz
- Flow ~4 SLPM
 - Time response < 0.2 s
- Precision (1 s): 25 ppb

Also at the Manhattan and downwind Coastal CT site:

- Ozone CO •
 - SO₂ CO_2 •
- NO/NO_2 10 Hz 3-D winds

Overview of science goals and foci

- Investigating urban emissions using multi-instrument source apportionment of traditional and emerging sources (VOCs, GHGs, trace gases, etc.)
- Examining fluxes in dense urban areas to aid emissions inventories
- Opportunities to examine vertical gradients (over 10 m) of GHGs and VOCs-SVOCs with onshore flow at the coastal CT site

Xinrong Ren

Aircraft and Mobile Measurements of GHGs during NEC-AQ-GHG 2023

Xinrong Ren¹, Phil Stratton^{1,2}, Paul Kelley^{1,2}, Winston Luke¹, Russ Dickerson², and Pete DeCarlo³ ¹NOAA Air Resources Laboratory (ARL) ²University of Maryland ³Johns Hopkins University

Cessna 402 Research Aircraft

To be deployed on same days to make simuletanous measurements of GHGs, other air pollutants, and met parameters on the ground and in the air.

- \succ CO₂/CH₄/CO (Picarro 2401-m)
- Ethane (Aeris Ultra)
- Black carbon (AE43 Aethalometer)
- Met and other air pollutants

NOAA's ARC (Air Resources Car)

17

- \succ CO₂/CH₄/CO (Picarro 2401)
- Ethane (Aeris Ultra)
- > ${}^{13}CO_2/{}^{13}CH_4$ isotope (Picarro G2201-i)
- Black carbon (AE43 Aethalometer)
- Met and other air pollutants

Aircraft Measurements of GHGs during NEC-AQ-GHG

Aircraft mass balance approach

$$E. R. = \int_{z_i}^{z_f} \int_{x_i}^{x_f} \left([C]_{x,z} - [C_{bg}]_{x,z} \right) \cdot U_{\perp} \cdot k_x \, dx \, dz$$

E. R. : emission rate (flux) $[C]_{x,z}$: concentrations (downwind) $[C_{bg}]_{x,z}$: concentration in background U_{\perp} : perpendicular wind speed k_x : scaling factor for U_{\perp}

Δ [C₂H₆]/ Δ [CH₄] and ¹³CH4 for souce identification

Mobile Measurements of GHGs during NEC-AQ-GHG 2023

- Major point sources survey
- Street-level GHG measurements
- Emission estimate based on observed species ratios and enhancements

Mobile measurements in DC-Balt in Spring 2022 Similar measurements to be conducted in NYC

Kevin Cossel: NYC-METS

Open-path dualcomb spectroscopy (DCS) for greenhouse gases and small VOCs

NIST team Kevin Cossel (kevin.cossel@nist.gov) Griffin Mead Nathan Malarich Fabrizio Giorgetta Esther Baumann Ian Coddington Nathan Newbury

Open-path DCS

AGES plan

Goals:

- characterize urban emissions of GHGs and spatial-temporal variability
- Use C₂H₆ to apportion thermogenic, biogenic sources of CH₄
- Look at other tracers for source apportionment
- Compare point and open-path measurements
- Look at sources of H₂CO and relationship to ozone formation

Near-Infrared (1.4-1.7 μm) System

- 1-14+ km path lengths
- CH₄, CO₂, (maybe NH₃)

Mid-Infrared (3-5 μm) System

- 0.3 1 km path lengths
- ppb-level sensitivity, ~2 minute time resolution
- CH₄, N₂O, CO₂
- H₂CO
- C₂H₆, Other small VOCs
- HDO/H₂O (<10 per mil)

Example representative beam paths from CUNY ASRC building Telescope gimbal auto-switches between paths (Red = Mid-infrared)

Contact: Kevin Cossel, kevin.cossel@nist.gov

We are looking for postdocs/grad students and collaborators!

Glen Diskin: AEROMMA

Measurements of CO, CO₂, CH₄, N₂O, and H₂O(v), using the **DACOM**, **DLH**, and **LI-COR** instruments, in support of AEROMMA

Glenn Diskin, Joshua DiGangi – NASA LaRC Yonghoon Choi, Mario Rana – SSAI / NASA LaRC

Instrument	Species	Measurement Precision (1σ)		Accuracy				
		Rate	(1 sec)	Accuracy				
DLH,		20 Hz	0.1%	5%				
DLH-SP*	H ₂ U(V)		or 0.05 ppmv	or 1 ppmv				
	СО	1-5 Hz	<1% or 1 ppbv	2%				
DACOM, 4-Channel Version*	CH ₄	1-5 Hz	<0.1%	1%				
	N ₂ O	1-5 Hz	<0.1%	1%				
	TBD	1-5 Hz	TBD	TBD				
LI-COR 7000	CO2	1-5 Hz	0.05 ppmv	0.15 ppmv				
* Under Development								

Measurement / Analysis Interests

- Evaluation of New Instruments
- DLH vs DLH-SP, or DLH-SP vs itself
- DACOM 4-channel vs Peischl

- Emission Ratios
 - CO:CO2, CO:CH4, others
- Biomass, Urban, Industrial
 - Marine/Urban Interface
- Stratospheric Influence, Other Dry Layers

