
THE CIX:

Toronto Halogens, Emissions, Contaminants, and Inorganics eXperiment

Cora Young York University

THE CIX Participants

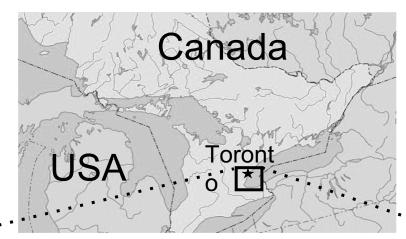
Jen Murphy University of Toronto

Rob McLaren York University

Pete Edwards
University of
York

Trevor
VandenBoer
York University

John LiggioEnvironment and Climate Change Canada



Cora Young York University

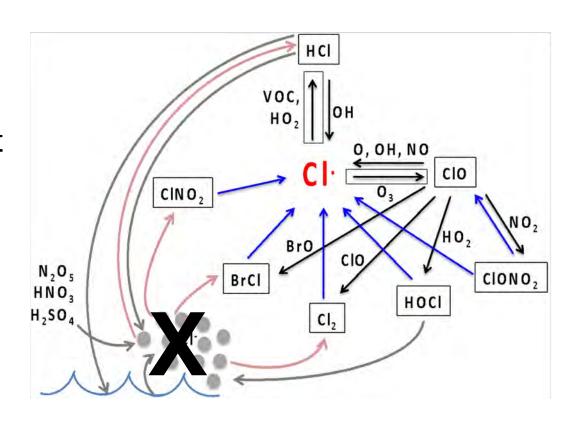
THE CIX

Toronto

- Largest continental city included in AEROMMA.
 - City population over 7M.
 - Regional population approaching 10 M.
- (One of) the fastest growing cities in North America.
- Measured precursors to ground-level ozone have been reduced in Toronto over past decades.
- Exceedances of the 8-hour ozone Canadian Ambient Air Quality Standard are still common.

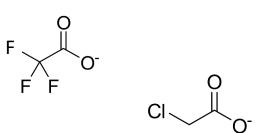
Toronto

- THE CIX site is located in an urban/suburban transition zone.
 - Not impacted by any large local sources (i.e. >500 m from any major roads).
 - ~20 km north of downtown Toronto and Lake Ontario (~2-3 hours transport time from downtown)
 - Typically not impacted by lake breeze fronts until late afternoon during summer.



Halogens

- Our team will be exploring reactive chlorine chemistry in Toronto.
 - Chlorine cycling in mid-continental regions are poorly understood.
 - We have previously observed HCl and pCl- in summertime Toronto.
 - We will explore direct sources and processes.
 - We will also undertake an HCI instrument intercomparison.
- Measurements will be discussed in instrument presentation later today.



Emissions

- We will have a suite of measurements that will allow us to determine emissions and quantities of several pollutants and greenhouse gases:
 - Meteorology and irradiance
 - SMPS (2 nm 1 μm particles)
 - OPS (0.3 10 μm particles)
 - O₃
 - NO_x
 - TN_r (total reactive N; will be described in instrument talk)
 - QCL (N₂O, CO₂, CO)
 - Probably but not yet officially confirmed: CRDS (CH₄, CO₂, CO)

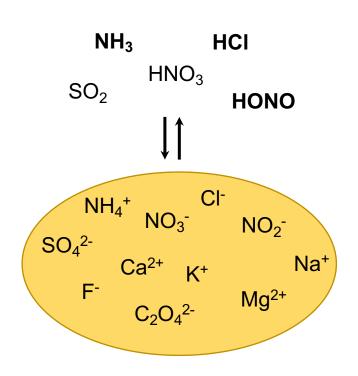
Contaminants

- Our team will be measuring several organic contaminants from two classes:
 - 1. Numerous poly- and perfluoroalkyl substances (PFAS)
 - 2. Haloacetic acids
- We will capture atmospheric deposition, as well as in situ gas and particle phase composition:
 - i. Automated precipitation samplers + offline analysis
 - ii. ToF-CIMS (acetate)
 - iii. Ambient ion monitor-ion chromatographymass spectrometry (AIM-IC-MS)

Contaminants

- We have observed higher-than-expected levels of gaseous PFAS in Toronto.
- This will be the most comprehensive set of atmospheric PFAS measurements to date.

Inorganics


 Our team will be exploring gas-particle partitioning with a suite of gas and particle measurements.

Particle:

- AIM-IC-MS: hourly online measurements of PM2.5 water-soluble ionizable composition
- nano-MOUDI: daily offline measurements of 12 size fractions from 10 nm – 10 um

Gas:

- AIM-IC-MS: hourly online measurements of water-soluble ionizable gases
- QCL: high time resolution NH₃
- TILDAS/CRDS: high time resolution HCI
- ToF CIMS (acetate): high time resolution HONO

Thank you!

youngcj@yorku.ca

