Reactive Nitrogen, Ozone, and Radicals

Glenn M. Wolfe (Moderator) NASA Goddard Space Flight Center

> AGES Meeting 28 September 2022

Speaker	Measurement	Mission
Glenn (for Lee Mauldin)	RO _x , H ₂ SO ₄	GOTHAAM
Glenn (for Ale Franchin)	NO _x , O ₃	GOTHAAM
Andrew Rollins	NO _x , NO _γ , O ₃	AEROMMA
Ilana Pollack	NH ₃	AEROMMA
Aaron Stainsby	OH Reactivity	AEROMMA
Saewung Kim	OH Reactivity	NYC-METS
Ezra Wood	$HO_2 + RO_2$	NYC-METS
Trevor VandenBoer	Acids, Total N _r	THE CIX
Paul Walter	Sondes	STAQS
Steve Brown	NO _y , O ₃	CUPIDS
Steve Brown	"Night NO _x "	AEROMMA

OH, HO₂, HO₂+RO₂, H₂SO₄ Measurements Lee Mauldin, Chris Cantrell, Emmanuel Assaf University of Colorado, Boulder

Where Discoveries Begin

OH

OH is measured by first converting it to ${}^{34}H_2SO_4$ via reaction with ${}^{34}SO_2$ and then measuring $H_2{}^{34}SO_4$. ${}^{34}S$ is used to discriminate between H_2SO_4 produced from OH and ambient H_2SO_4 – which is also measured.

HO₂ and HO₂+RO₂

 HO_2 and HO_2+RO_2 are also measured by converting them to H_2SO_4 via reaction with SO_2 and NO then measuring H_2SO_4 .

 HO_2 is measured in a low O_{2_1} relatively high NO environment, in which most RO_2 are not converted to H_2SO_4 .

 $HO_2 + RO_2$ is measured in a high $O_{2,}$ relatively low NO environment, in which both are converted to H_2SO_4 with high efficiency.

H₂SO₄

H₂SO₄ is measured using nitrate Chemical Ionization Mass Spectroscopy (CIMS)

Detection Limits

OH, $H_2SO_4 - 3x10^5$ molecule cm⁻³ for 30 sec measurement HO₂, HO₂+RO₂ - 5x10⁵ molecule cm⁻³ for 60 sec measurement

Hornbrook et al., AMT (2011), 10.5194/amt-4-735-2011

Box model underpredicts OH and overpredicts RO₂ at high isoprene

Direct Calculation of Radical Termination Rates

In Situ Measurements of NO, NO₂, and O₃

- Photons are counted using dry-ice cooled PMT.
- For NO₂, first convert to NO in cooled photolytic cell.
- For NO_y, first convert to NO on heated gold catalyst.
- For O₃, reagent NO is added to flow of ambient air.

HAIS O3 (integrated with NO/NO2) 3 sample flows, each employing the chemiluminescent reaction: $NO + O_3 NO_2^* + O_2$

> Nominal detection limits: NO: 10 pptv NO₂: 20 pptv O₃: 50 pptv

Data reported at 1s time resolution

People you might see around the NOx / O_3 /carbon rack:

Ale Franchin (PI)

Courtney Owen

Kirk Lesko

Kirk Ullmann

Teresa Campos

Shared double rack with ACOM Carbon instrumentation, total installation taking up one station in C-130

NOx/NOy and O_3 measurements on the DC-8 for AEROMMA

Kristen Zuraski

Drew Rollins

Eleanor Waxman Jeff Peischl

NO-LIF Technique / O₃ Chemiluminescence Technique

NO/NO₂/NO_y Technique

- Laser excitation @ 215 nm
- Fluorescence collection ~250-260 nm
- 1 s detection limit: < 1 ppt
- 3 channel instrument for continuous measurements of NO, NO2, NOy

- NO LIF Heritage
- FIREX-AQ 2019 (DC-8)
- SABRE 2022 (WB-57)
- ACCLIP 2022 (WB-57)

O₃ CL Instrument:

- O₃ + NO -> light
- High precision
- No interferences

NOy / O₃ Science Foci

Marine

- Fluxes of NO and O₃
- NO_v closure in the MBL
- NO_x gradients in coastal regions and impact of peroxy radical fate on oxidation product distributions

Continental

- NO_x sources in urban areas
- Impact of NO_x on O₃ production
- Fate of peroxy radicals and impact of NO_x
- UT NO_2 / NO ratios and lightning NO_x

Department of Atmospheric Science

Contact: ilana.pollack@colostate.edu

Gas-phase Ammonia Measurements for AEROMMA on the DC-8

Ilana Pollack PI, Instrument Team Lead

Emily Lill

PhD Candidate,

Team Member

Emily Fischer co-PI, Team Member

Jeff Pierce co-PI, Team Member

Gas-phase NH_3 on the DC-8 using a QC-TILDAS

Instrument features:

- Commercial Aerodyne QC-TILDAS mini-CS
- Filterless, aerodynamic separation of particles
- Vibration applied to laser obj. for reduced noise
- Isolation mounted for reduced motion sensitivity
- Active continuous passivation and heating of sampling surfaces for improved time response

Instrument performance*:

Meas. Freq.: 10 Hz sampled, 1 Hz reported Time Res. (t_{90}): <1 s with, ~2 s w/out passivant Precision: <60 ppt @ 1 Hz Detection Limit: <200 ppt @ 1 Hz Accuracy: 12% *As determined in flight on the NSF/NCAR C-130.

Key reference:

Pollack et al. (2019), AMT., 12, 3717–3742, DOI: <u>10.5194/amt-12-3717-2019</u>.

Ammonia for AEROMMA Science Goals

OH REACTIVITY INSTRUMENT

Forschungszentrum Jülich Institute of Energy and Climate Research

SEPTEMBER 27, 2022 Mitglied der Helmholtz-Gemeinschaft

Hendrik Fuchs Instrument PI

Anna Novelli Scientist

Contact: H.Fuchs@fz-juelich.de

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

27. September 2022

SCIENCE GOALS AND FOCI

Test completeness of kOH_{calculated} by comparison with kOH_{measured}

Mitglied der Helmholtz-Gemeinschaft

27. September 2022 Slide 15

Determination of Instantaneous Ozone Production Regime with total OH reactivity measurements in the New York Metropolitan Area during the AEROMMA campaign Criscie Wong, Suite Devin, and Katherine Paradelon

- Ground OH reactivity Observations using the Comparative Reactivity Method (Sinha et al., 2009) with an updated inlet system
- Possible ground observations for the CA deployment

Specific science questions

- Identifying any unmeasured/unidentified compounds
- · Source appointments for the unaccounted/unknown
- Wholistic identifications for the ozone production regimes

Additional Observations

TOF CIMS Measurements (SF₆-) to quantify radical precursors: HONO, HO₂NO₂, and HCI BVOC distribution

Drexel ECHAMP (HO₂ & RO₂) at CUNY ASRC (NYC-METS)

Khaled Joy Grad Student

Drexel Ethane CHemical AMPlifier HO₂ + RO₂ at CUNY Advanced Science Research Center (NYC-METS)

Targeted Species

"Total" Peroxy Radicals. Only detects peroxy radicals that react with NO to form NO₂ and propagate HOx cycle

Instrument Performance

Time resolution: 2 minutes **Detection limit: 2-4 ppt** Precision: 1-2 ppt Accuracy: 20 - 30%

Measure NO₂

 $HO_2 + NO \rightarrow OH + NO_2$ Air $OH + C_2H_6 + O_2 \rightarrow C_2H_5O_2 + H_2O$ $C_2H_5O_2 + NO + O_2 \rightarrow CH_3CHO + NO_2 + HO_2$ **References:** Anderson et al. (2019) ACP 19.5: 2845-2860 Wood et al. (2017) ES&T Letters 4.1: 15-19 NO, C_2H_6 Anderson et al. (2021), ES&T 55.8: 4532-4541

Science Goals & Questions

Characterize Instantaneous Ozone Production Rate P(O₃) and dependence on NOx & VOCs (especially VCPs)

Determine Instantaneous Ozone Production Rates: P(O₃) = k([HO₂]+[RO₂])[NO]

Example from San Antonio, 2017:

Do we understand high-NOx ozone chemistry? Investigate with 0-D models (collaborative)

Large model-measurement discrepancies observed in London (Whalley et al. ACP 2018), Beijing, Wangdu, Colorado.

Bonus activities:

- Provide NO and NO₂ measurements (chemiluminescence/CAPS)
- Quantify on-road NOx emission factors (C-balance method)
- Provide photolytic HONO calibration source for
 I⁻ CIMS (Lindsay and Wood, AMT 2022)

York University - Reactive Nitrogen Measurements

SEYED DANIAL NODEH FARAHANI

ToF-CIMS Instrument (acetate)

PhD Student Department of Chemistry York University

MOXY SHAH

Nitrogen Oxides Instrumentation

MSc Student Department of Chemistry York University

TREVOR VANDENBOER

Team Leader

Assistant Professor Department of Chemistry York University

PROSPECTIVE GROUP MEMBER

ToF-CIMS and Total Reactive Nitrogen Instrumentation

Graduate Student and/or Postdoc Department of Chemistry York University

York University –H-ToF-CIMS (Acetate) and Total-N_r

Targeted Species

<u>Total N_r</u>

Gases: HONO+HNO₃, NR₃, NO, NO₂ Particulate: All condensed N_r Time resolution: 5 – 20 minutes Detection limits: 0.4 ppb for 1 min Precision: signal/analyte dependent Accuracy: ~±20 %

H-ToF-CIMS

Inorganic Acids: HCl, HONO, HNO₃ Organic Acids Persistent Acids (PFCAs): TFA Haloacetic acids: monochloroacetic acid Performance: Currently under determination

York University –H-ToF-CIMS (Acetate) and Total-N_r

Science Goals

<u>Total N_r</u>

- NO_x contributions to O₃ and radical reservoir formation
- Urban gas and particle phase N_r budgets
- Inorganic vs organic N in PM
- Validate through CIMS and AIM-IC measurements

H-ToF-CIMS

- Impacts of HONO on radical budget
- Acid impacts on secondary inorganic PM formation

YOR K 👢

• Formation and fate of persistent halogenated acids in urban air

Ozondesondes during STAQS

Paul Walter St. Edward's University

John Sullivan NASA Goddard

Ozonesondes during STAQS

Balloon-based Instruments: En-Sci 2Z Ozonesonde iMet-4RSB Radiosonde

<u>Data Collected:</u> Vertical Profiles of O_3 and meteorological data

<u>Altitude range:</u> Surface to 24-30 km depending on balloon size Rise rate of ~5 m/s

Instrument Performance:

Ozone

Accuracy: 5-10% Response time: 25 s (vertical resolution ~125 m)

Time Resolution: 1 Hz

50-60 ozonesondes near Long Island Sound

- ~20 collocated at each TOLNet ground-based ozone lidar site
 - NASA GSFC ozone lidar (Flax Pond, NY)
 - NASA LaRC ozone lidar (Westport, CT)
- 10-20 from other locations

Validation of

- ground-based & airborne ozone lidars
- TEMPO
- Pandoras

Characterize ozone episodes

- Boundary layer and residual layer ozone
- Identification of possible ozone transport
- Boundary Layer heights
- Vertical profiles of U and V winds

Ozonesondes during STAQS

Ground-based ozone lidar locations shown in pink. Image courtesy of Laura Judd.

NOAA Nitrogen Oxide Cavity Ring Down Spectrometer (NO_xCaRD)

4 Channel, one color CRDS instrument for NO, NO₂, NO_y, O₃

Kristen Zuraski

- 1. Direct detection of NO₂ @ 405
- 1. Convert NO to NO₂ in excess O₃ to measure NO_x NO + O₃ (20 ppm) \rightarrow NO₂ + O₂
- 2. Convert O_3 to NO_2 in excess NO to measure O_x O_3 + NO (20 ppm) \rightarrow NO₂ + O₂
- 3. Thermally dissociate NO_y to NO₂ NO_y + Δ (650 °C) \rightarrow NO₂

NO₂: ≥ 20 pptv, 5% accuracy / 1 Hz NO, O₃: ≥ 50 pptv, 7% accuracy/ 1 Hz NO_y ≥ 20 pptv, 12% accuracy / 1 Hz

Science Objectives: Coastal Urban Plume Dynamics Study (CUPiDS)

Scanning Doppler Lidar (CSL)

- Wind, Turbulence and Aerosol profiles
- Boundary Layer Depth

MAX-DOAS (CU – AC4 supported)

Urban ozone production efficiency

• NO₂, Formaldehyde, Glyoxal, IO profiles

Air mass aging and photochemistry (NO_x/NO_y)

Vertical profiles and cross boundary layer gradients of NO₂

• Surface albedo

۰

•

۲

In-Situ Airborne (CSL,GML)

- GHG, NO₂, NO, NOy, O₃
- Temp, Press, RH

NOAA Nighttime Nitrogen Oxides Cavity Ring Down Spectrometer (NNOx)

Wyndom Chace Carrie Womack

P-3 Instrument: Developed 2004

Single Bay: 2022

- 4 Channel, 2 Color CRDS Instrument for NO₃, N₂O₅, NO₂, O₃
- 2 Channels @ 662 nm for detection of NO₃ (direct) and N₂O₅ (thermal dissociation to NO₃) N₂O₅ + ∆ (140°C) → NO₂ + NO₃ NO₃ by 662 nm optical extinction, sensitivity ≥ 0.2 pptv / 1 Hz
- 2 Channels @ 405 nm for detection of NO₂ (direct) and O₃ (via conversion to NO₂) O₃ + NO (excess, ~20 ppm) → NO₂ + O₂ (or sum of NO₂ + O₃ = O_x) NO₂ by 405 nm optical extinction, sensitivity ≥ 20 pptv / 1 Hz

Science Objectives

Limited time for flying after dark, and no dedicated night flights !

2. Isoprene Oxidation

3. Satellite NO₃?

1. N_2O_5 heterogeneous uptake

40

 $\tau (N_2O_5)$ (min)

2.5

2.0

1.5

1.0

0.5

0.0

20

Emissions (10^7 tons yr⁻

Reactive Nitrogen, Ozone, and Radicals

Glenn M. Wolfe (Moderator) NASA Goddard Space Flight Center

> AGES Meeting 28 September 2022

Speaker	Measurement	Mission
Glenn (for Lee Mauldin)	RO _x , H ₂ SO ₄	GOTHAAM
Glenn (for Ale Franchin)	NO _x , O ₃	GOTHAAM
Andrew Rollins	NO _x , NO _y , O ₃	AEROMMA
Ilana Pollack	NH ₃	AEROMMA
Aaron Stainsby	OH Reactivity	AEROMMA
Saewung Kim	OH Reactivity	NYC-METS
Ezra Wood	$HO_2 + RO_2$	NYC-METS
Trevor VandenBoer	Acids, Total N _r	THE CIX
Paul Walter	Sondes	STAQS
Steve Brown	NO _y , O ₃	CUPiDS
Steve Brown	"Night NO _x "	AEROMMA