AGES Forecasting and modeling team presentations

Pierce (moderator):

- NOAA CSL (Schwantes)
- NOAA GSL (Schnell)
- ➢ NSF (Carlton)
- NCAR (Kumar)
- > Wisconsin (Pierce)
- Post-Campaign (Jathar)
- NASA (Knowland)

September 29 Morning: Logistics, Flight Planning, Coordination, Data Management

NOAA CSL Forecasting / Flight Preparation Plans for AEROMMA & CUPiDS

Plans:

- Prepare climatologies and other useful information before the campaign
- Provide slides and a forecasting discussion ۲ each day for the AEROMMA and CUPiDS campaigns
- Goal for each day is to produce concise slides ٠ that specifically help to answer the following:
 - Should we fly today or tomorrow?
 - What should the target be?
 - Which flight pattern do we choose?
- If needed, this team will also provide support • during the flight as well

The Team

Siyuan Wang

Harold Gamarro

Jian He

Edward Strobach Graham Feingold

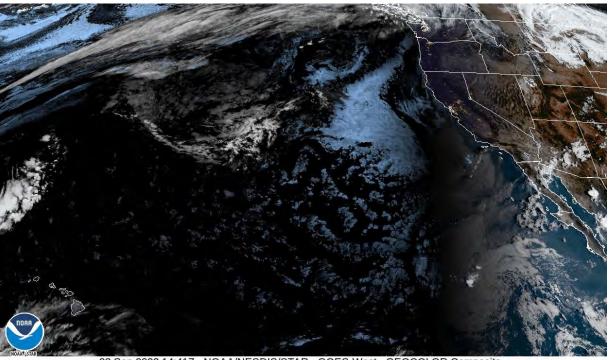


Congmeng Lyu

Wayne Angevine

Meng Li

Jan Kazil



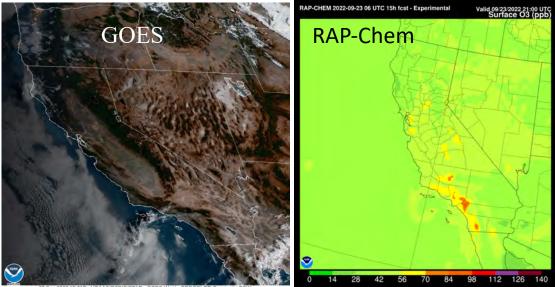
Forecasting / Flight Preparation Plans for AEROMMA - Marine

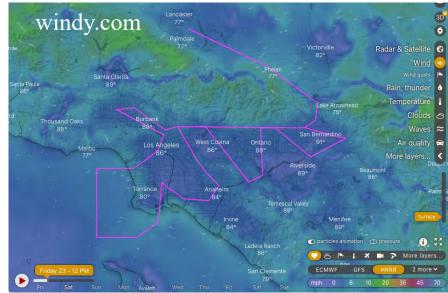
Provide the following information prior to the flight:

- Regional and local meteorological forecast
- GOES satellite products to monitor clouds
- Cloud forecasts (RAP or HRRR)
- Surface wind forecasts (windy.com)
- DMS climatology and daily satellite chlorophyll and SST products
- Offshore NO_x forecasts (RAP-Chem or HRRR-Chem)
- Tropical Tidbits for forecasting and satellite products

GOES

23 Sep 2022 14:41Z - NOAA/NESDIS/STAR - GOES-West - GEOCOLOR Composite


Provide the following information during the flight:


- Use the GOES satellite products to identify specific cloud morphologies in order to potentially change targets during the flight
- Let us know what other products are useful

Forecasting / Flight Preparation Plans for AEROMMA – Urban & CUPiDS

Provide the following information prior to the flight:

- Regional and local meteorological forecast including the NWS Discussions
- Plan to involve local meteorologists
- GOES satellite products to monitor clouds
- NEXRAD radar for clouds, precipitation, and winds
- Surface wind forecasts (windy.com)
- Commercial Aircraft Sondes (AMDAR) data to assess the mixing layer height and the PBL height forecasts (RAP-Chem or HRRR-Chem)
- Wildfires and prescribed burns impacting the region including smoke forecasts from HRRR-Smoke
- AirNow AQI Forecast and Ozone and PM_{2.5} Forecasts (RAP-Chem or HRRR-Chem)
- Tropical Tidbits for forecasting and satellite products Let us know what other products are useful

Experimental air quality forecasting with the Rapid-Refresh model coupled to chemistry (RAP-Chem)

Jordan L. Schnell (jordan.schnell@noaa.gov)

w/ contributions from Ravan Ahmadov, Gregory J. Frost, Stuart A. McKeen, Brian C. McDonald, Brian Jamison, Mackenzie Arnold, Jian He, Meng Li, Megan M. Bela, Rebecca H. Schwantes, Barry Baker, Joseph B. Olson, Wayne M. Angevine, Eric P. James, Ka Yee Wong, R. Bradley Pierce, Matthew Coggon, Colin Harkins, Georg A. Grell

AGES Workshop | September 29, 2022

Photo Credit: Patrick Cullis, CIRES

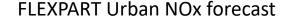
RAP-Chem Overview

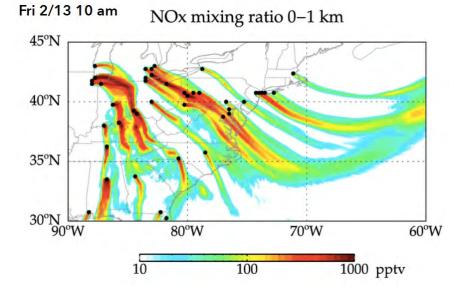
- 13.5 km resolution using operational RAP IC/BCs
- 36-h forecasts initialized at 06Z and 18Z
- Plots available online: https://rapidrefresh.noaa.gov/RAPchem/
- Chemical mechanism: simplified carbon-bond coupled to VBS-SOA (<u>85 species</u>, <u>96 RXNs</u> vs 217 species, 366 RXNs in NOAA/NWS NAQFC)
- **Online emissions:** dust (FENGSHA), sea salt, biogenics (BEIS), and wildfires + plumerise as a *f* (FRP)
- **Photolysis:** TUV + aerosol direct effects
- Radiation: RRTMG + aerosol direct effects
- MP: Thompson-Eidhammer Aero-aware (*loosely coupled*)
- Chemical vertical mixing: Inline with MYNN EDMF
- Chemical LBCs from RAQMS
- Automated NRT AQS/AERONET surface verification and comparison with TROPOMI NO₂, HCHO, CO
- Workflow easily modified for specific output/diagnostics

(maybe) coming soon: HRRR-Chem @3km

- All features from RAP-Chem are carried over except <u>no</u> <u>cumulus parameterization</u> (3 km vs. 13 km) & associated convective transport/scavenging
- Forecast is currently being tested, but there is SIGNIFICANT computational overhead (~15K corehours/forecast day = 6x RAP-Chem

AP-CHEM 2020-07-20 00 UTC 24h fcst - Experimental Valid 07/21/2020 00:00 UTC Surface O3 (ppb)


https://rapidrefresh.noaa.gov/RAPchem/

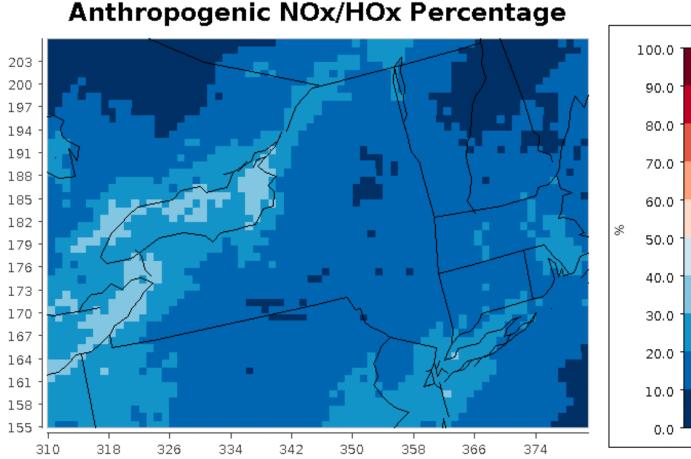

2m temp	1	1	RAP-CHEM 2022-09-23 06 UTC 0h fcst - Experimental Valid 09/23/2022 06:00 UTC Vertically Integrated NO2 (1e15 * molecules/cm3)	RAP-CHEM 2022-09-23 06 UTC 12h fcst - Experimental Valid 09/23/2022 18:00 UTC Surface PM 2.5 Aerosol Dry Mass (//g m)
10m wind	1	1		
1h precip	1	1	the state	300
PBL height	1	1		the shower of the second
UV index	1	1	Math Parts L	80
Surface Visibility	1	1		
Fire Radiative Power	1	1		
Surface O3	1	1		500 p
Surface CO	1	1		the second
Surface NO2	1	1		4.0 4.0 Am
Surface HCHO	1	1		
Surface isoprene	1	1	00	3.0 200
Surface NH3	1	~	0000	2.0 2.0
Surface N2O5	1	1		850
Vertically integrated CO	1	1		
Vertically integrated NO2	1	1	1 2 3 5 7 10 15 20 25 30 40 50 100 200	1 2 4 6 8 12 16 20 25 30 40 60 100 200 1 0 485 969 1454 1939 2423 2908 3393 3877 4362 1000 100
Vertically integrated HCHO	1	1	1 2 3 5 7 10 15 20 25 30 40 50 100 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
HCHO/NO2 column ratio	1	1		
Surface PM2.5	1	1	https://rapidrefresh.noaa.gov	v/RAPchemEPA/ https://rapidrefresh.noaa.gov/RAPchemEPAsites/
Surface PM10	1	1	CONUS	A airnow
Surface Dust	1	1		- RAP-Chem_18Z
Surface Pollen	1	1	50 -	NCAR_FIREX-AQ NCAR_AQ-WATCH
Surface Organic Aerosol	1	1	1.a.	NAQFC_CMAQ_oper_06Z
Surface nitrate aerosol	1	1	A 40-	online-CMAQ(UFS,v7,0c3)
Vertically integrated PM2.5	1	1	â l	
AOD at 550nm	1	1	(Add) auozo	
Air Quality Index	1	1	8	
x-section 40N O3	1	1	20	Se dente So of
x-section 40N PM2.5	1	1		
x-section 45N O3	1	1		
x-section 45N PM2.5	1	1	18:00 00:00 06:00 18-Sep	12:00 18:00
x-section ATL O3	1	1	2022 time_local	MONET
x-section ATL PM2.5	1	1		

Modeling in multiple stages: campaign planning, in-field forecasts (L. Jaegle UW) & post campaign synthesis (L. Jaegle, A. Carlton)

Forecasting tools to be used for GOTHAAM (Jaegle):

- Meteorological forecasts & FLEXPART forecast trajectories to identify plumes
 - 5-day forecasts: Urban NOx tracer + BVOC tracer with fixed lifetimes
- NASA/GMAO GEOS-FP and GEOS-CF chemical forecasts (5-day forecasts. 25 km resolution)
- Near-Real-Time GEOS-Chem chemical transport simulations for comparison to aircraft observations in the field

GOTHAAM mission forecasting and modeling

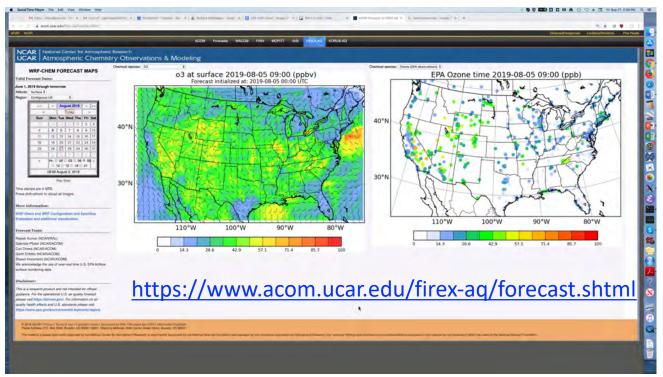


GEOS-Chem modeling for data analysis after the mission:

Nested grid simulation 0.25° x 0.3125° (~25 km) over N. America GEOS-FP assimilated meteorology Aerosol-oxidant simulation (HOx-NOx-O3- VOC-Br/Cl/I + SO4²⁻-NH4⁺-NO3⁻, BC, organic aerosol, dust, sea salt

WRF-CMAQ modeling for data analysis after the mission: Initial and boundary layer conditions from GEOS-Chem WRF assimilated meteorology Extensive gas-phase VOC oxidation and complex SOA module

Nighttime flights needed: example objective for why


Objective 3. Quantify the relative importance of the various oxidation processes for both gas phase and aerosol species, and how the relative importance of these processes vary across the diel cycle and as a function of the chemical system

(biogenic/urban/marine).

NCAR ACOM/RAL Regional Air Quality Prediction System

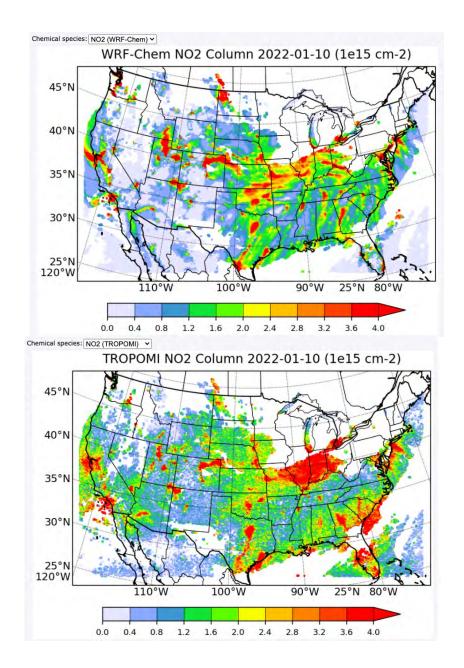
Rajesh Kumar and Gabriele Pfister

- Support of field campaigns and air quality research from local processed to pollution transport to wildfires to stratospheric intrusions.
- Information for policy makers (e.g. used by CDPHE) complements NOAA's operational forecasts.
- Early identification of model errors and biases.

Configuration: WRF-Chem V3.9.1, MOZCART Chemistry, inert tracers, 12 x12 km² over CONUS, 4 km² Coloaado; daily 48-hr forecasts

Visualization

Parameters:


Surface Obs Ozone & $PM_{2.5}$ Ozone, NO_x PM_{10} & $PM_{2.5}$ (surface) AOD 550 nm CO, CO anthro, CO boundary cond., CO fires CO fires boundary cond., CO chemical PBLH per CDPHE SWDOWN per CDPHE CO asia Ventilation Index**

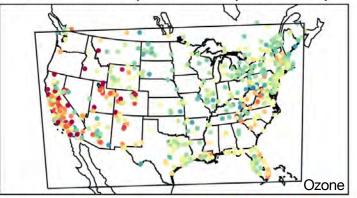
Altitudes: Surface, 3, 5, 8 km

Regions: CONUS Colorado Front Range

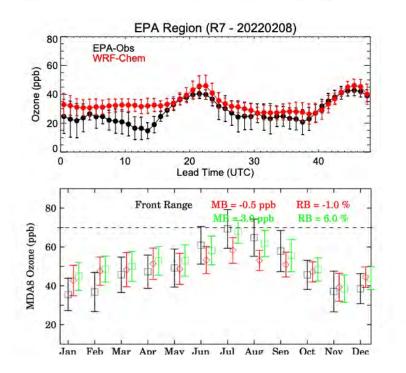
Special products:

TOLNET forecasts TROPOmi and WRF-Chem NO₂ MODIS and WRF-Chem AOD

** In process: WRF only forecasts at 1.3 x 1.3 km² over Colorado Front Range


Online Evaluation

 AIRNOW Ozone and PM_{2.5} NRT observations 48-hour forecast statistics (timeseries + maps) for 10 EPA regions + Colorado + Front Range


Offline Evaluation

- AIRNOW Ozone and PM_{2.5} NRT observations Monthly Statistics
- U.S. EPA surface wind observations
- MOPITT CO
- MODIS AOD
- NASA TOLNET Ozone Lidar (case studies)

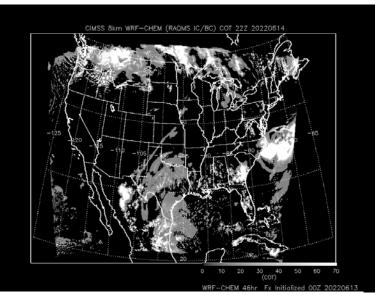
We will be happy to add other products in support of upcoming field campaigns! Root Mean Square Error (20220208)

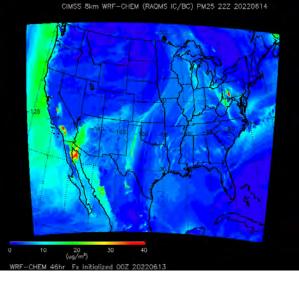
UW-Madison AGES Forecasting

Maggie Bruckner UW-Madison AOS

Jerrold Acdan UW-Madison AOS

Aditya Kumar UW-Madison SSEC

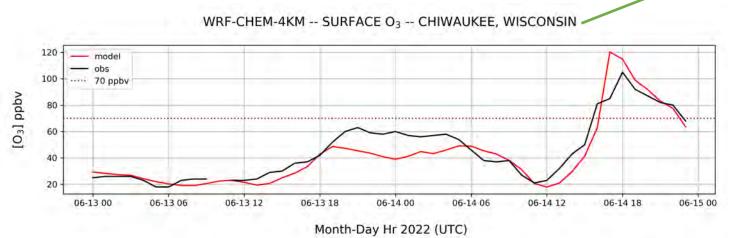

Allen Lenzen UW-Madison SSEC

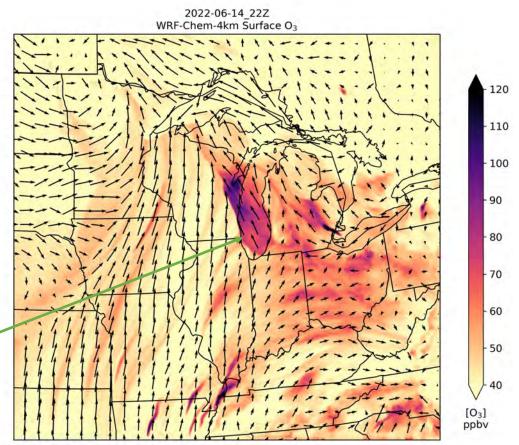


Brad Pierce UW-Madison SSEC/AOS

- 8km CONUS nested RAQMS/WRF-Chem (aerosol/clouds/meteorology)
- 4km LADCO nested RAQMS*/WRF-Chem (chemistry/aerosols/clouds/meteorology)

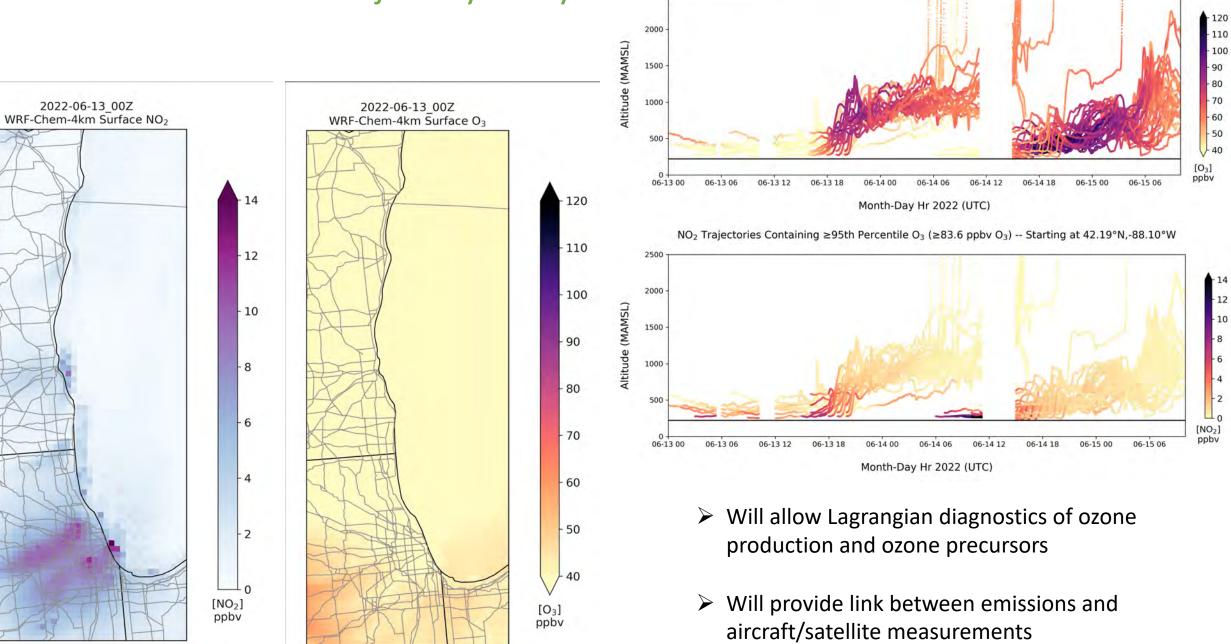
*Currently conducting retrospective testing with WACCOM




Contact: rbpierce@wisc.edu

4km WRF-Chem V.4.4 (Developed in collaboration with Gabi Pfister, ACOM)

Meteorology	HRRR 3-km
Anthropogenic emissions	NEI17 12-km (non-trended)*
Biogenic emissions	MEGAN v2
Fire/biomass burning emissions	FINN v1.5
Sea surface temperature	GLSEA
Chemistry mechanism	T1_MOZCART
Photolysis option	TUV


*Will update to trended NEI17 4km (Kirk Baker)

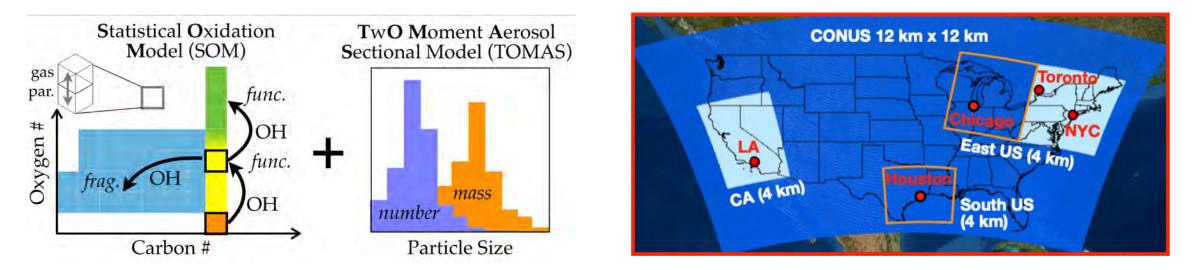
4km WRF-Chem V.4.4 Trajectory Analysis

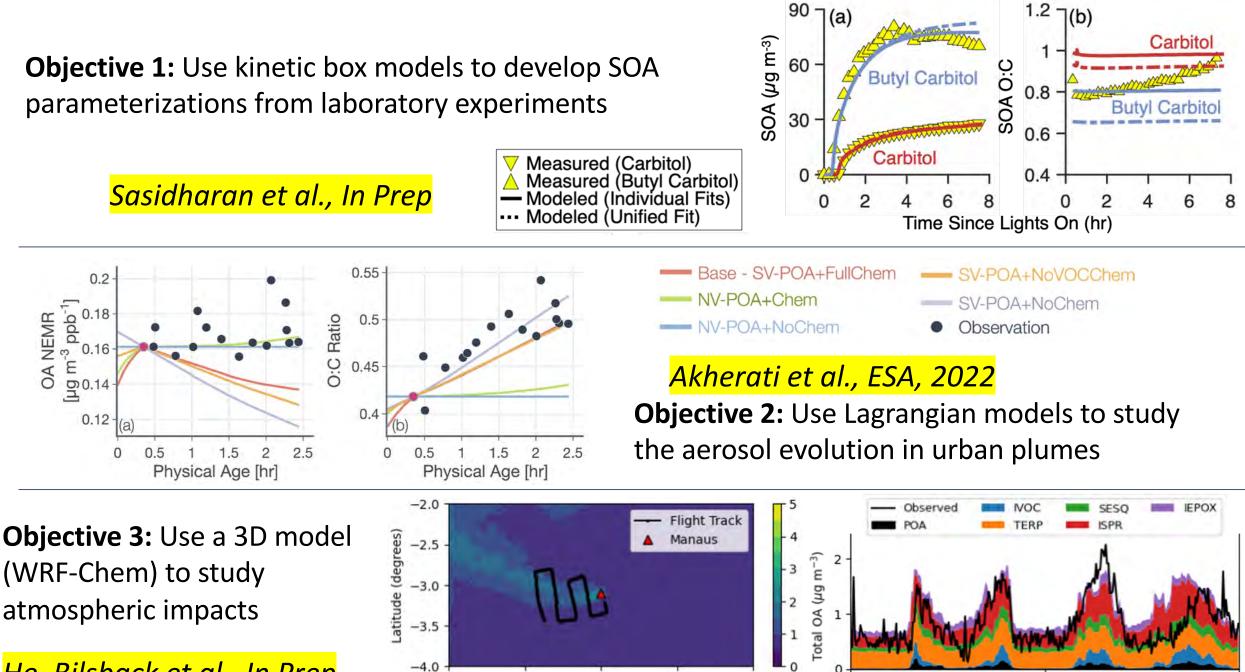
 \geq 95th Percentile O₃ Trajectories (Containing \geq 83.6 ppbv O₃) -- Starting at 42.19°N,-88.10°W



2500

Studying the Emerging Contribution of VCPs and Food Cooking to Urban and Regional Air Quality




emistry, Carbon Cv

hate Program

TBD

Partnerships/Collaborations: NOAA (Warneke, Schwantes, McDonald; AEROMMA), UC Riverside (David Cocker; VCP SOA), CMU (Presto; VCP SOA), Helsinki (Ehn, Jokinen; monoterpene SOA), Toronto (Chan; cooking), Hong Kong (Chan; cooking)

-59

-58

14.5

-60

Longitude (degrees)

-62

-61

He, Bilsback et al., In Prep

15.0

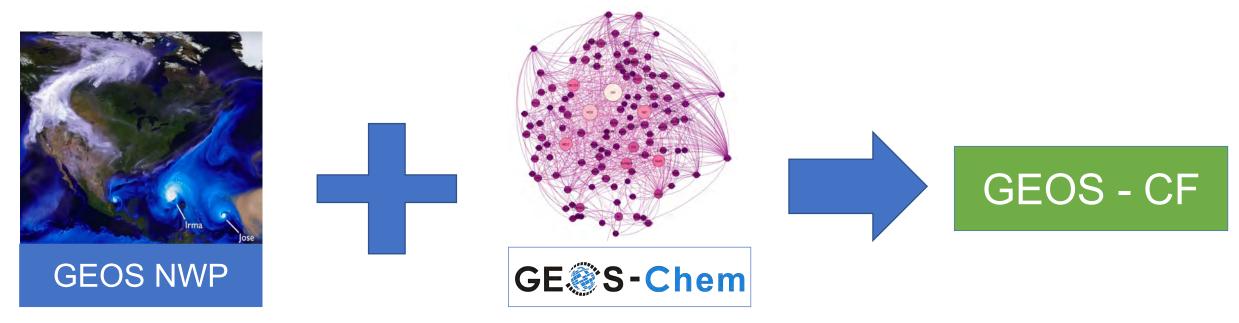
Time UTC (hr)

Secondary organic aerosol Chamber Experiments for Non-Traditional Species (**SCENTS**)

- Studied SOA formation from <u>14 oxygenated VOCs and 2 VOC mixtures across 34</u> <u>experiments</u> (Spring and Summer 2022)
- OVOC classes: carbitols, furans, terpenoids, acetates, siloxanes, adhesives
- Data will be used to inform VCP VOC chemistry on AEROMMA modeling project

Supporting NASA missions with the GEOS Composition Forecast System, "GEOS-CF"

K. Emma Knowland


Morgan State University/GESTAR-II

NASA Global Modeling and Assimilation Office (GMAO)

In collaboration with:

Christoph Keller, Pamela Wales, Lesley Ott, Joe Ardizzonne, Christine Bloecker, Austin Conaty, Meredith Nichols, Callum Wayman, Steven Pawson

GEOS Composition Forecast

Version 12.0.1 Tropospheric and Stratospheric chemistry

Keller, C. A., Knowland, K. E., et al. (2021). Description of the NASA GEOS composition forecast modeling system GEOS-CF v1.0. *Journal of Advances in Modeling Earth Systems (JAMES)*, 13, e2020MS002413. https://doi.org/10.1029/2020MS002413

Knowland, K. E., Keller, C. A., et al. (2022). NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition. JAMES https://doi.org/10.1029/2021MS002852

https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/

k.e.knowland@nasa.gov

GEOS NWP with Coupled GEOS-Chem chemistry

GEOS-CF v1.0

One **5-day forecast** per day

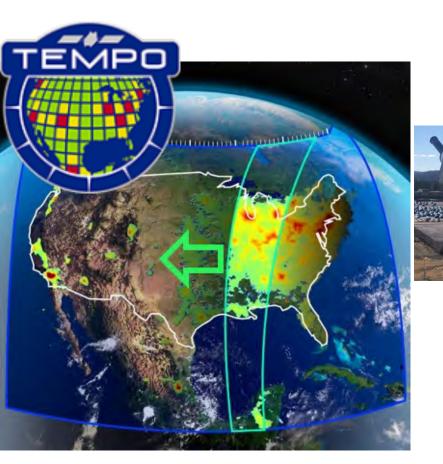
- Initialized at 12z
- > 1-day meteorological replay ("analysis")
- ➤ 5-day forecast
- ➤ c360 (0.25°, ~25x25 km²)
- 72 layers (surface to 0.01hPa)
- GEOS-Chem v12.0.1

Data distributed via OpenDAP and HTTPS:

- > 2D output at 15 minute and hourly frequency
- 3D output at hourly and three hourly frequency, 1-hour
 2D & 3D output, including specific TEMPO file for
 trace-gas retrievals

Emissions:

- > HTAP v2.2 (global bottom-up) for anthropogenic
- Near real-time fires (QFED)
- Online dust, sea salt, plant emissions


Observation-constraints:

- Currently no direct data assimilation of constituents in GEOS-CF
- GOCART aerosols constrained by satellite measurements of AOD
- Biomass burning emissions from QFED

<u>Knowland</u> et al., 2022. "File Specification for GEOS-CF Products." GMAO Office Note No. 17 (Version 1.2), available from http://gmao.gsfc.nasa.gov/pubs/office_notes

Support a broad range of NASA applications

GEOS - CF

- Realistic atmospheric composition in the troposphere <u>and</u> stratosphere in GEOS-CF is essential to support a broad range of NASA applications measuring trace gases and aerosols, including:
 - Airborne campaigns
 - Satellite retrievals of trace gases
 - Stratosphere-troposphere exchange

https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/

GMAO Mission Support for Field Campaigns

GMAO Active Mission Support

NASA

https://fluid.nccs.nasa.gov/missions/

Global Modeling and Assimilation Office

Weather Mission Support CF Reanalysis Ca

https://gmao.gsfc.nasa.gov/field_campaigns/re al_time_support_requests.php

To request GMAO Real-Time Support for NASA Field Campaigns

realtimesupportrequests@gmao.gsfc.nasa.gov

- 1. NASA field campaign name
- 2. Brief overview of the campaign
- 3. Requester's contact information
- 4. Time period when support is required
- 5. URL of the campaign website
- 6. Brief description of the real-time support requested in terms of GEOS products and any campaign-specific needs

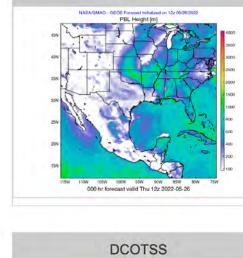
Request as soon as possible, but no later than 3 months prior to the start of campaign

Navigation

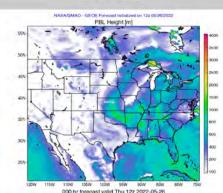
» FLUID Overview

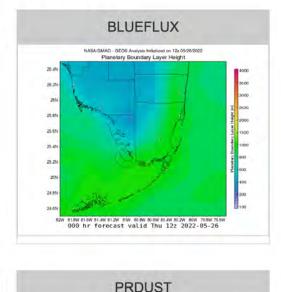
» Contact

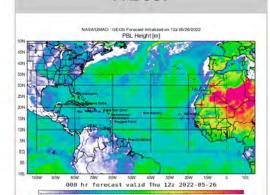
Active Missions


» ACCLIP

- » BLUEFLUX » DCOTSS
- » PRDUST


Non-Active Missions


» ABOVE
 » ACE-ENA
 » AEOLUS-CALVAL
 » ATOM
 » CAMP2EX
 » EPOCH
 » MOSAIC
 » ORACLES
 » SCOAPE


» SOCRATES » TRACER-AQ

ACCLIP

TEMPO specific collection: "sat_inst_1hr_r721x361_v72"

- Regional Chemistry and Meteorology Diagnostics to support TEMPO satellite
- **Frequency:** hourly instantaneous from 00:00 UTC
- Spatial Grid: 3D, model-level, subset region of full horizontal resolution
- Dimensions: longitude=721, latitude=361, every 0.25^o
 - longitude: 0º to -180º
 - **latitude:** 0° to 90°
- vertical level: 72 layers
- Granule Size: ~258 MB per file
- Start date: 00 UTC 1 January 2022
- Mode: Replay only; Forecasts available based on mission requirements
- <u>Knowland</u> et al., 2022. "File Specification for GEOS-CF Products." GMAO Office Note No. 17 (Version 1.2), available from http://gmao.gsfc.nasa.gov/pubs/office_notes

Name	Dim	Description	Units
BrO tzyx		Bromine monoxide (BrO, MW = 96.00 g mol-1) volume mixing ratio dry air	mol mol-1
FRSEAICE	tyx	ice covered fraction of tile	1
FRSNO	tyx	fractional area of land snowcover	1
GLYX	tzyx	Glyoxal (CHOCHO, MW = 58.00 g mol-1) volume mixing ratio dry air	mol mol-1
НСНО	tzyx Formaldehyde (CH2O, MW = 30.00 g mol-1) volume mixing ratio dry air		mol mol-1
HNO2 tzyx		Nitrous acid (HNO2, MW = 47.00 g mol-1) volume mixing ratio dry air	mol mol-1
10	tzyx Iodine monoxide (IO, MW = 143.00 g mol-1) volume mixing ratio dry air		mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
03	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
OCIO tzyx		Chlorine dioxide (OClO, MW = 67.00 g mol-1) volume mixing ratio dry air	mol mol-1
PHIS	tyx	surface geopotential height	m+2 s-2
PS	tyx	surface pressure	Ра
Q	tzyx	specific humidity	kg kg-1
SNODP	tyx	snow depth	m
SNOMAS	tyx	Total snow storage land	kg m-2
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1
Т	tzyx	air temperature	К
TROPPB	tyx	tropopause pressure based on blended estimate	Ра
U2M	tyx	2-meter eastward wind	m s-1
V2M	tyx	2-meter northward wind	m s-1
ZPBL	tyx	planetary boundary layer height	m

Summary of GEOS-CF Status

- GEOS-CF daily global composition forecasts at 25km resolution are generated in near-real time:
 - High-resolution historical estimates for fields are available since January 2018
 - Forecasts remain available on data servers for two weeks
 - The forecasts of the five most-requested surface pollutants (O₃, NO₂, CO, PM2.5, and SO₂) remain accessible via data servers for January 2019-present

Forecast visualizations and links to data available at: <u>fluid.nccs.nasa.gov/cf</u> and /cf_map

> Applications users include:

Keller, C. A., Knowland, K. E., et al. (2021). Description of the NASA GEOS composition forecast modeling system GEOS-CF v1.0. Journal of Advances in Modeling Earth Systems, 13, e2020MS002413. https://doi.org/10.1029/2020MS002413

Knowland, K. E., Keller, C. A., et al. (2022). NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition. JAMES https://doi.org/10.1029/2021MS002852