Flight Planning: Status and First Ideas

Everyone has 4 – 5 minutes:

- Sally Pusede (NO₂ inequality maps) Virtual
- Becky Schwantes / Carsten Warneke (AEROMMA urban)
- Laura Judd (STAQS)
- John Mak (GOTHAAM)
- Sunil Baidar (CUPiDS)
- Xinrong Ren (ARL/UMD CESSNA)
- Andrew Rollins / Patrick Veres (AEROMMA marine)

Sally Pusede (NO₂ inequality maps)

New York City–Newark, Chicago, and Los Angeles

South Bronx, NY and Ironbound, NJ Englewood, South Side, Mickinley Park, Little Village, and Austin, IL Englewood, Huntington Park, and neighborhoods near the Port of Long Beach, CA

Figures created by Isabella Dressel

Sampling considerations: data density

Dressel et al., Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application, ES&T, 2022

Meaningful information at coarser spatial resolutions. TROPOMI inequalities are largely insensitive to observation pixel area. In LA and Chicago, unpublished results are similar

LISTOS dataset:

	Mean of Daily Inequalities Daily Inequalities Relative Inequalities (%) Coefficient of Variation Mean People of Black and Hispanics + Atrices Atrices						
	Rela	tive Inequalities	Coe	Coefficient of Variation			
Mean Pixel	Black and	Hispanics +	People of Color in	Black and	Hispanics	People of Color in	
Area	African	Latinos	Low-	African	+ Latinos	Low-	
(km ²)	Americans	Latinoo	Income	Americans		Income	
()			Tracts			Tracis	
20–25	25 ± 2	24 ± 3	33 ± 3	0.78	0.83	0.67	
25–30	23 ± 3	22 ± 3	31 ± 4	0.93	0.97	0.80	
30–35	24 ± 3	24 ± 3	32 ± 4	0.76	0.76	0.70	
35–45	25 ± 3	21 ± 3	32 ± 4	0.78	0.92	0.72	
45–60	25 ± 3	22 ± 3	34 ± 4	0.81	0.87	0.79	
>60	19 ± 3	19 ± 3	26 ± 4	0.91	0.97	0.86	

Daily TROPOMI observations May 2018–September 2021:

Sampling considerations: data extent

Dressel et al., Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application, ES&T, 2022

Results are sensitive to how much of the city is sampled because key population groups may be missed

Daily TROPOMI observations May 2018–September 2021:

	Mean of	Daily Ine	qualities	Daily Inequalities			
	Relativ	ve Inequalitie	es (%)	Coef	ficient of Vari	ation	
City coverage(%)	<30	30–60	>60	<30	30–60	>60	
Black and African Americans	12 ± 2	30 ± 3	30 ± 1	1.99	0.64	0.40	
Hispanics and Latinos	11 ± 2	29 ± 3	28 ± 1	2.00	0.62	0.53	
Asians	10 ± 2	26 ± 3	28 ± 1	2.05	0.65	0.36	
Below-poverty tracts	11 ± 4	25 ± 3	26 ± 1	2.47	0.66	0.45	
People of color in low-income tracts	18 ± 4	37 ± 4	38 ± 1	1.81	0.65	0.36	

Sampling considerations

For flight planning:

- (1) Expansive city coverage is more important than high sampling density in small areas for city-wide inequality estimates
- (2) Redundant sampling is low priority—TEMPO provides the continuity
- (3) TEMPO evaluation will focus on morning and evening time periods and need to demonstrate:

(a) Measurements resolve neighborhood-level NO₂ differences (much progress already made here) (b) Spatial patterns in the columns reflect pollutant patterns at the surface \leftarrow vertical profiling

(4) Understanding air pollution in specific neighborhoods with EJ concerns is a different endeavor than describing inequalities city-wide and not well handled by aircraft, may be better achieved with ground monitoring. Community leaders and other representatives must be deeply involved at all stages

Becky Schwantes / Carsten Warneke (AEROMMA urban)

<u>Preliminary</u> Flight Plans for AEROMMA – Urban: Overview

Becky Schwantes and Carsten Warneke

City	# of flights / city	# of 10 km profiles / flight	# of 6 km profiles / flight	Repeat Patterns / flight
Los Angeles (Tier 1)	3	0	9	3
New York (Tier 1)	4	2	6	2
Chicago (Tier 1)	4	2	6	2
Toronto (Tier 2)	2	2	6	2
Houston/Dallas (Tier 3)	Back-up	2	6	1
Atlanta (Tier 3)	Back-up	2	6	2
Transit	2	2		

<u>Around</u> 110 total flight hours + SARP

Preliminary Flight Plans for AEROMMA – Urban: Los Angeles

Preliminary Flight Plans for AEROMMA – Urban: Los Angeles

Goals:

- Repeat the magenta flight track three times
 - Weekday take off at 11 am
 - Weekday take off at 1 pm
 - Weekend take off at 11 am
- The repetition of the magenta flight track provides:
 - daily variability
 - diurnal variability
 - weekend/weekday impact
- The SARP flights (same payload as AEROMMA) greater coverage and more missed approaches around LA
 - Central Valley
 - Salton Sea

Preliminary Flight Plans for AEROMMA – Urban: New York City

- Total flight time ~ 8.5 hrs
- Repeat the green arrow raster 2 times each flight
- In between repeats fly at 6 km for Scanning-HIS
- Three spirals up to 6 km Upwind, Long Island Sound, Downwind
- One missed approach LaGuardia airport
- Rest of the flight tracks we stay within the boundary layer as much as possible

30

25

20

10

MSL

- Goals:
 - Pseudo-Lagrangian plumes
 - 1 weekday 10 am takeoff, 1 weekday noon takeoff, 1 weekend 10 am takeoff
 - 1 stagnation event

Preliminary Flight Plans for AEROMMA – Urban: Chicago

- Three spirals up to 6 km upwind, Midway airport or over Lake Michigan, downwind
- Missed approach Midway airport
- Rest of the flight tracks we stay within the boundary layer as much as possible
- **Goals:** 2 weekday 10 am takeoff, 1 weekday noon takeoff, 1 weekend 10 am takeoff

- Total flight time ~ 7.5 hrs
- Repeat the green arrow raster 2 times each flight to get diurnal information

Laura Judd (STAQS)

Synergist	^{ic} Gulfstrea	m Flight	Planning
EMPO		G-V: GCAS + HSRL2	G-III: AVIRIS-NG + HALO
	Research flight hours	120	104
	Targeted hours per flight	9-10	4
Ouality	Flight-raster per day	1 flight – 3 rasters	2 flights-2 rasters
	Nominal altitude	FL280	FL390
S dence	Primary Target Opportunities	4 days in ∉ ~8 hou	each major city

Prioritize systematic raster mapping of an ~56 x140 km area with the G-V 3x per day (morning-midday-afternoon) and G-III 2x per day (morning-afternoon) in primary target areas of LA, NYC, and Chicago

Forecasting priorities: clouds (especially cirrus)

Additional overflights will be considered secondarily and may include:
(1) extended legs to hit additional ground sites or source regions
(2) transecting of raster from a different direction overflying ground sites
(3) pollution plumes extending from urban cities before transiting to base

Raster representation in Houston during TRACER-AQ Synergistic EMPO Air Quality Science

Los Angeles- ascent/descent time (30 min): June 30th: 14:45-01:15 UTC(10.5 hour)

NYC: transit of 1 hour one way July 29: 11:45-22:15 UTC (10.5 hours) August 29: 12:15-21:45 UTC (9.5 hours)

Chicago: transit of 40 minutes one way July 29: 12:45-23:15 UTC (10.5 hours) August 29: 13:15-22:30 UTC (9.25 hours)

G-V: 3 rasters + ascent/descent + TMF $x^2 = 9h 20m$ G-III:1 raster + ascent/descent + TMF x = 3h 55m

G-V: 3 rasters + transits + YCx2=10 h G-III: 1 rasters + transit + local land + YCx1= 4h 15 m

G-V: 3 rasters + transits = 8h 50m G-III: 1 raster + transits = 3h 50m

Overpassing TMF between rasters (25 minutes x1) Pollution over the water motivating small extended transect

Targets of opportunities outside the raster?

- Overpassing New Haven and Yale Coastal is key between Rasters
 - Opportunities to transect pollution outside before transiting home

Will make some other flight plans for potential secondary target cities

Synergistic

EMPO

Add

→

→

Add

→

Add

→

Add

→

Add

→

Add

→

Add

<td

Additional thoughts:

- → Current thoughts are to have the G-III and G-V mapping the same flight lines spaced an appropriate distance apart to avoid direct under flights (laser operation rules) but to optimize synchronous measurements in morning & afternoon
 - Alternative idea: fly raster lines starting at opposing directions to increase the temporal frequency of HSRL data products from HSRL2 & HALO
- → Remote sensing data will be even more informing when synchronized with other aircraft measuring profiles of NO₂, O₃, HCHO, methane, CO₂, and aerosol properties within raster areas.

→ Ask: If you have ideas of missing opportunities in these areas, please share (especially with geolocated information!)

John Mak (GOTHAAM)

GreaterNY Oxidant, Trace gas, Halogen and Aerosol Airborne Mission Funded by the US National Science Foundation (ACP, GEO)

PIS: John E. Mak (lead PI), Daniel Knopf, Paul Shepson, Stony Brook University; AnnMarie Carlton, UC Irvine; Delphine Farmer, Colorado State U.; Roy Mauldin, U. Colorado; Kerri A. Pratt, U. Michigan; Joel Thornton and Lyatt Jaegle, U. Washington; Glenn Wolfe, U. Md/NASA

Location: *Greater New York City* Start-End Date: *July 1-August 12 2023*

NSF C-130 Aircraft (EOL)

Deployment

PIS: John E. Mak (lead PI), Daniel Knopf, Paul Shepson, Stony Brook University; AnnMarie Carlton, UC Irvine; Delphine Farmer, Colorado State U.; Roy Mauldin, U. Colorado; Kerri A. Pratt, U. Michigan; Joel Thornton and Lyatt Jaegle, U. Washington; Glenn Wolfe, U. Md/NASA

Location: Greater New York City

Start-End Date: July 1-August 12 2023

NSF C-130 Aircraft (EOL)

Total DEPLOYMENT hours requested:	150
Est. number of flights:	18
Flight cruise altitude:	1000-1500' AGL
Est length of flights	6-8 hours

Nighttime flights? YES, about 40% of flights will depart around 0200-0300 local time.

Deployment

- Flight planning approach:
- TBD. We will investigate Lagrangian flight planning (e.g., STILT), however because we are flying within the same space multiple times, we may also opt for fixed patterns to obtain composites. Still thinking about this.
- Lyatt Jaegle (UW, co-PI) will provide forecasts up to 5 days in advance.

Proposed flight plan 1, daytime, clear skies, E-W flow

Flight plan 1, daytime, W-SW flow, 1500' AGL cruise alt, missed approaches/spiral climbs to ~6000' at or between red dots WARNING W-105A OCEAN ATLANTIC WARNING W-105A 5500 M Length of flight plan (red lines) = ~650nm; 2 tracks

Specifics regarding missed approaches, climbs, etc. will be worked out in the field and will be subject to ATC, pilot discretion, traffic, etc.

Proposed flight plan 3, nighttime, clear skies

NOTE climbs are to a lower max altitude. More nighttime missed approaches are requested as a result of the very shallow boundary layer that we would like to sample. Missed approaches into Class B airports (KJFK, KEWR, KLGA) would be highly preferred.

Flight plan 3, night flight (0700 Z takeoff), W-SW flow, 1500' AGL cruise alt, missed approaches/spiral climbs to ~3000' near or between each red dot

Sunil Baidar (CUPiDS)

CUPiDS: initial flight plan ideas

Sunil Baidar and the CUPiDS team

MAX-DOAS Lidar

COAstal Urban Plume Dynamics Study

Flight level met & trace gas

NOAA Twin Otter

CSL NOAA CHEMICAL SCIENCES LABORATORY

Pollution transport/ O₃ photochemistry

Features:

- Legs perpendicular to wind direction (SW).
- Flight legs upwind, over and downwind of the city.
- Profiles at 3 sites: upwind (Morristown), middle (TOPAZ) and downwind (New Haven, ground site)
- Stacked legs outside and inside BL
- Flight altitude: ~500 m above BL

NOAA Chemical Sciences Laboratory

COastal ban Plume Dynamics

Temporal Evolution of Sea Breeze

42.0

Features:

- Repeat cycle: 1 hour
- Profiles at TOPAZ and ground site ٠ every other loop
- ~4 loops per flight
- Flight altitude: ~500 m above BL

Local time

11:30

1.5

11:00

1.0

Elapsed time, hours

12:00

2.0

CUPi Coastal Irban Plume **Dynamics** Study

Quantify NY emissions

- Flight legs perpendicular and parallel to wind direction.
- One box inside the BL and one outside
- Flight leg along the Hudson

Features:

• Based on Twin Otter flight during ECO.

COastal rban Plume Dynamics

Xinrong Ren (ARL/UMD CESSNA)

NOAA-ARL/UMD Cessna: Readiness and Flight Plans

Xinrong Ren¹, Phil Stratton^{1,2}, Paul Kelley^{1,2}, Winston Luke¹, Russ Dickerson², and Pete DeCarlo³ ¹NOAA Air Resources Laboratory (ARL) ²University of Maryland ³Johns Hopkins University

NOAA-ARL/UMD's Aircraft Measurements during AEROMMA 2023

Cessna 402 Research Aircraft

Cessna Research Aircraft Instrumentation

Variable	Method
Position	GPS
	Thermistor Hygristor,
Meteorology (T, RH, P, 2-D Wind)	Capacitance Manometer,
	Differential GPS
Fast Greenhouse Gas Analyzer	Cavity Ring Down Spectroscopy
$(CH_4/CO_2/CO/H_2O)$	Picarro Model G2401-m
Ethane Detector	Mid-IR Absorption, Aeris Ultra
Ozone (O ₃)	UV Absorption
Nitrogen Dioxide (NO ₂),	CAPS, Teledyne
Nitric Oxide (NO)	Chemiluminescence, Thermal
Nitrogen Oxides (NOy)	dissociation to NO
Black Carbon (7 wavelengths at 370,	Aethalometer, AE43
470, 520, 590, 660, 880, 950 nm)	
VOCs*	TofWerk PTR-Tof-MS

* Support is needed for PTR-ToF-MS (PI: Pete DeCarlo, Johns Hopkins).
 All other instruments will be ready.
 30

Flight Plan Example: NYC-Long Island Sound

- Based on air quality forecast
- To coordniate with other aircraft

Flight Plan Example: NYC-Long Island Sound

Vavigation	Log	Milford	х	No.	Pe	eekskill yorktown	RAAS	New Haver
Groundspeed	140 kts	Reverse	Clear	Vernon Township	Harriman State Park	9 584	RANK N	Milford
🙁 KBLM	Dela	were			421		I III	Fairfield
8 DAPVY	20.5nm	324°T	0:09	23	287		Norwall	- Löng Tsland Si
8 кмми	20.3nm	357°T	0:09			White Plains.	Stamford	
S JEDIL	27.2nm	63°T	0:12					
	29.2nm	202°T	0:13	287				254
8 FRNKY	19.3nm	115°T	0:08	Parsippany-Troy	80-95		T TO	25 0
	14.3nm	47°T	0:06				a let	
8 KHPN	30.9nm	343°T	0:13	Momstow	MANDA	TTAN 295	1 (35)	Long Island
	40.8nm	111°T	0:18		New Y		len City Farmingdale	Bay Shore
	32.9nm	328°T	0:14	70	O PROC	OKLYN 2		Great South Bay Fire Island
	40.5nm	179°т	0:17	ater	A			8
	33.1nm	306°T	0:14	P	20	-	8	
	9.8nm	192°T	0:04	Edison				
KLGA	10.7nm	227°T	0:05		(36)			
	28.4nm	187°т	0:12		34 0	N		
8 KBLM	357.9	nm	2:34					
Retr	ieve Wx Bı	rief & File		sulle C	Long Bra	anch		Hohi
A	276 Lang	Trent	on 🕫	195	Asbury Pa	ark		New Jersey

Morning & afternoon flights

Ozone forecast, Sunday, 7/19/20

1-hour Ozone, Sunday (7/19) @ 2 PM EDT

8-hour Ozone, Sunday (7/19)

Meteorology initialized in WRF-Chem utilizing NAM 7/18 00Z forecast, FIVE-VCP 2019 inventory

Go-No Go decisions: based on the latest forecast (i.e., 24 hr) **Forecast timing:** 3-day AQ forecast with daily updates.

UMD Cessna Flight Plan for Sunday AM, 7/19/20

Objective: Photochemistry/emission flight over Baltimore/Philly/NYC **Waypoints**: KBWI KRENE KMTN PALEO UCPIP CEDDA JEDIL HEROS KLGA FROGI BIPKE VAGUS JAFFY KHPN Takeoff: ~11 AM EDT, Duration: ~3 hrs

UMD Cessna Flight Plan for Sunday PM, 7/19/20

Objective: Photochemistry/emission flight over Baltimore/Philly/NYC **Waypoints**: KHPN FORMU YNOTT HEXEF PACER KLGA LAYDE APPLE MOSSE EDJER PALEO KMTN KRENE KBWI Takeoff: ~3 PM EDT, Duration: ~3 hrs

Navigation	Log		X					11-450		YNOTT	
Groundspeed	140 kts	Reverse	Clear	N AN		1 1.	()		达米主		
KHPN	120	100			30	37 28	2 pt	Real	KHPN		a de
	21.5nm	113°T	0:09							ADD	
FORMU	26.5nm	353°T	0:11	a start of the		ALC: N			GA		
YNOTT	30.8nm	128°T	0:13		20			Close .			HEXE
HEXEF	24.4nm	346°T	0:10	and the state		·XATA	四月 1 年 1			FORIVIO	Nº -
PACER	57.9nm	227°T	0:25		MALE	- Content	2. S	LATUE			
KLGA	0.0nm	0°T	0:00			April	anital S	× ×	K-J	0	1
KLGA	9.5nm	239°T	0:04	S Cont			AOSSE CONTRACT	A PERMAN	APPLE	2000 MS	74
LAYDE	8.4nm	183°T	0:04			Contration of the		1 Alton		NARNING N-108A	WARNING W-106 B
APPLE	36.5nm	258°T	0:16		121 A 12	200	Plan Prover			V.	The L
MOSSE	35.4nm	189°T	0:15			A There	1 × 11	A state	America	-	
EDJER	81.8nm	233°T	0:35	TACK .		Safe Contra	TAL AN	5.401	all' prime it	(marked)	$\langle X \rangle$
PALEO	18 0nm	354°T	0.08	H-A	REZE	A AL		又合計	Automation a lorge	A	without a
KMTN	18 6nm	275°T	0.08			34		Part Part	man	N.	X
KRENE	12 4	1470-	0:05	A DAM	IN IS	· · · · ·	EDJER	6-10-2-	N	F	
кви	12.4nm	147 1	2:43	KMT	N	. AT		Nº de	1 1	/	11
	561.7		2.45	2 44 0	6	102.1		Peter		1	1
Retr	ieve Wx Br	rief & File	KRENE		2200	A TOP I	0 0 0 V	To and the second secon			1
	XX	2			10	07		09 max			1
12 Mar	the for	6		BWI	1%		A	Anana A	saste un	Spiral	
DEST	CAE G	X	Contraction of the		PALEO	V-N-		NI			10 mm turning the

O₃ on the flight track

 \succ Max. O₃ over the LIS in the early afternoon.

SSW wind in the afternoon pushed the NYC downwind plume toward CT inland.

Andrew Rollins/Patrick Veres (AEROMMA marine)

Sampling Strategy 1: Low latitude marine fluxes

Target flux sampling opportunities in tropical and mid-latitude Pacific where important fluxes of key species are inferred to occur

Location determined by several variables:

• Cloud fields

- Wind speed
- DMS climatology Dissolved O₂
- NO_x abundance

Sampling Strategy 2: Chasing New Particle Formation from DMS

Longitude, hr