

XCH₄, Aerosol, and PBLH Measurements with the High-Altitude Lidar Observatory

Amin Nehrir, Rory Barton-Grimley, Steven Wofsy, Sean Crowell, Roisin Commane and

HALO and MethaneAir Teams <u>amin.r.nehrir@nasa.gov</u>, rory.a.barton-grimley@nasa.gov

HALO – Cross-Cutting DIAL and HSRL

CH₄ IPDA, H₂O DIAL, Doppler Winds, HSRL

- 4λ 935 nm water vapor differential absorption lidar (DIAL)
 - Carroll et al. 2022, AMT
- 2λ 1645 nm methane integrated path DIAL (IPDA)
 - Barton-Grimley et al. 2022, AMT
- 532 nm high spectral resolution lidar (HSRL), 1064 nm backscatter
 - Hair et al. 2008, Applied Optics

HALO – Cross-Cutting DIAL and HSRL

CH₄ IPDA, H₂O DIAL, Doppler Winds, HSRL

- 4λ 935 nm water vapor differential absorption lidar (DIAL)
 - Carroll et al. 2022, AMT
- 2λ 1645 nm methane integrated path DIAL (IPDA)
 - Barton-Grimley et al. 2022, AMT
- 532 nm high spectral resolution lidar (HSRL), 1064 nm backscatter
 - Hair et al. 2008, Applied Optics

CH₄ Integrated Path Differential Absorption (IPDA)

HALO validation during ACT-America and STAQS

- Validated CH₄ retrievals against co-located in-situ obs.
 - Excellent agreement with B200 in-situ, PBL sensitivity over the column
 - <1% bias, <.5% precision compared to vertical soundings
- First demonstrations of airborne range resolved profiling

- Validated CH₄ retrievals against co-located in-situ obs.
 - Excellent agreement with B200 in-situ, PBL sensitivity over the column
 - <1% bias, <.5% precision compared to vertical soundings
- First demonstrations of airborne range resolved profiling

https://www-air.larc.nasa.gov/missions/staqs/

Synergistic TEMPO Air Quality Science (STAQS)

 HALO flew on the NASA LaRC G-III during STAQS with AVIRIS-NG and PICARRO

Flight Campaign Goals:

- Evaluate AM/PM lidar derived XCH₄ variability across urban settings
- Evaluate active/passive synergies
- Evaluate HgCdTe detecto CH₄ profiling

STAQS – Toronto Cloudy/Smokey XCH₄ Retrievals

- Satellites alias observations towards clear sky conditions
- Clouds and aerosols confound retrievals of diffuse regional emissions
- Lidar offers excellent coverage through dense fair weather cumulus clouds and insensitive to aerosols within the column

STAQS – New York AM/PM Flights

STAQS – New York AM/PM Flights

- Broad city scale enhancements observed between AM and PM flights
- Many small point sources identified from landfills, power plants, and wastewater plants
- Good correlation with in-situ CH₄ DC-8 observations

STAQS – New York AM/PM Flights – DC-8 Synergy

- Broad city scale enhancements observed between AM and PM flights
- Many small point sources identified from landfills, power plants, and wastewater plants
- Good correlation with in-situ CH₄ DC-8 observations

STAQS – New York AM/PM Flights – MAIR Synergy

PM - XCH₄

- Broad city scale enhancements observed between AM and PM flights
- Many small point sources identified from landfills, power plants, and wastewater plants
- Good correlation with in-situ CH₄ DC-8 observations

Active/Passive Measurements & Synergies

- Middlesex County Landfill
 (East Brunswick, NJ)
- HALO GIII and DC-8 flight on 07/26/23 (afternoon)
- Methane Air flight on Lear Jet on 09/03/23

Active/Passive Measurements & Synergies

* ~30 min HALO – DC8 temporal separation

DC8 CH₄ Data – C/O NOAA CSL– AEROMMA 2024

- Middlesex County Landfill (East Brunswick, NJ)
- HALO GIII and DC-8 flight on 07/26/23 (afternoon)
- Methane Air flight on Lear Jet on 09/03/23

Active/Passive Measurements & Synergies

* ~30 min HALO – DC8 temporal separation

DC8 CH₄ Data – C/O NOAA CSL– AEROMMA 2024

- Middlesex County Landfill
 (East Brunswick, NJ)
- HALO GIII and DC-8 flight on 07/26/23 (afternoon)
- Methane Air flight on Lear Jet on 09/03/23

Optimizing flight plans for active sounding

- Flight plans optimized for for swath of passive imagers
 - HALO lidar sounder often sampled upwind of major sources
 - High sensitivity still allow for identification of enhancement despite missing the primary 'plume'
- Many sources identified that are no longer reporting to the EPA
 - Parks/sanctuaries atop of capped landfills
 - Golf courses atop of capped landfills
- Methane enhancements observed near power plants?

JFK

Disentangling Sources

reporting

- Work ongoing with Sean Crowell and Roisin Commane to compare observations with different inventories (Crowell) and historic surface observations (Commane)
- Preliminary results show good • agreement at city scale
- Emission rate discrepancies relative to inventories from individual sources

Cedar Creek Waste water treatment plant

Summer 2025 - Benchmarking Methane Area Emissions with MethaneAIR and HALO

Goal: provide rigorous test of "top down" regional area flux models

- There is currently no way to validate inverse models
- Designed to tightly constrain inverse models by spatially and temporally resolving atmospheric burden of methane as it sets up and evolves over a 2-day period

Summer 2025 - Benchmarking Methane Area Emissions with MethaneAIR and HALO

Goal: provide rigorous test of "top down" regional area flux models

- There is currently no way to validate inverse models
- Designed to tightly constrain inverse models by spatially and temporally resolving atmospheric burden of methane as it sets up and evolves over a 2-day period
- Create a high-resolution map of methane over several large (80 x 120 km) regions, oversampling in time spanning several days
- Repeat experiment at 3 sites 2 areas of Appalachian basin + Washington DC/Baltimore urban area

Summer 2025 - Benchmarking Methane Area Emissions with MethaneAIR and HALO

Strategy:

- HALO methane lidar on NASA G-3 will fly target area overnight on NASA G-3
- MethaneAIR and HALO methane lidar on NASA G-3 will then fly two sorties covering target region (80 x 120 km)
- Repeat for 2 consecutive days
- MethaneSAT will target same region (200 km x 200 km)
- A network of EM27Sun spectrometers distributed around study area for additional ground truth and temporal variability

2024 MethaneAIR Benchmark Flights: Uinta Basin UT

- Example of morning (left) and afternoon (right) repeats of Uinta basin
- Methane bulge (bottom) seen in early/mid morning, near O&G infrastructure in a low-lying area near a river valley; likely accumulated overnight
- In the afternoon map, the bulge has spread out and attenuated
- Multiple passes per day (in 2025, 4 including HALO overnight and MSAT) allow for distinguishing between emitted and transported methane

Data:

https://www-air.larc.nasa.gov/missions/staqs/

Contacts

Amin Nehrir(amin.r.nehrir@nasa.gov)
Rory Barton-Griley (rory.a.barton-grimley@nasa.gov)

Thanks to GHG center, Tropospheric Composition, Earth Science Technology Office, SBIR, LaRC, GSFC

STAQS – Central Valley and LA Basin

Central Valley

LA Basin

STAQS – Central Valley XCH₄ and PBLH Distributions

- Enhancements from agriculture and O&G observed throughout the central valley
- HALO observed pooling of CH₄ on the western side of the valley, consistent with prevailing winds and in-situ DC-8 observations

Complementing Cloud Slicing With Clear Air Profiling

- Integrated and flew a sensitive HgCdTe detector previously used for column measurements from strong surface echo to evaluate range resolved profiling (FT and PBL columns in clear air)
- Building on the first airborne demonstration of range resolved CH₄ profiles from LISTOS and ACT-America (Barton-Grimley et al. 2022)

