Airborne CH₄ and CO₂ observations using imaging spectrometers Andrew K. Thorpe^{1*}, Robert O. Green¹, and AVIRIS/EMIT teams ¹NASA Jet Propulsion Laboratory, California Institute of Technology *Andrew.K.Thorpe@jpl. nasa.gov # Remote measurement of GHG enhancements using NASA imaging spectrometers has a long track record Airborne CH₄ observations from AVIRIS, 2008 Thorpe et al., 2013 First spaceborne observations from Hyperion, 2016 Thompson et al., 2016 Multi-sector methane observations with AVIRIS-NG across California, 2019 Duren et al., 2019 Observations from EMIT sensor from international space station, starting 2022 Thorpe et al., 2023 AVIRIS-3 CH₄ observations begin in western US, 2023 Coleman et al., in prep. ## NASA imaging spectrometers deliver new understanding of GHG emissions **AVIRIS-3 2023 AVIRIS-NG* 2013 AVIRIS 2008** CH₄, CO₂ point source imager (energy, waste, & agriculture emissions) Improved sensitivity relative to EMIT (10s of kg CH₄ hr⁻¹) *Global Airborne Observatory (GAO) was built at JPL #### **EMIT** on ISS 2022** - CH₄, CO₂ point source imager (energy, waste, & agriculture emissions) - Less sensitive relative to airborne (100s of kg CH₄ hr⁻¹) - Wider coverage **Carbon Mapper Coalition Tanager Satellite utilizes JPL technology and will have improved sensitivity compared to EMIT #### Remote measurement of CH₄ and CO₂ spectral fingerprints ### NASA imaging spectrometers | Parameter | EMIT | AVIRIS-3 | AVIRIS-5 | |------------------------------|-------------|---|---| | Platform | ISS | Aircraft | Aircraft | | Spectral range | 381-2493 nm | 381-2493 nm | 381-2493 nm | | Spectral sampling | 7.4 nm | 7.4 nm | 5.0 nm (improved gas sensitivity) | | Swath samples | 1242 | 1242 | 1242 | | Ground sample distance (GSD) | 60 m | Variable (0.25
m at 0.5 km
AGL, 10.0 m at
20 km AGL) | Variable (0.25
m at 0.5 km
AGL, 10.0 m at
20 km AGL) | | Image swath | 80 km | Variable (0.36
km at 0.5 km
AGL, 14.5 km
at 20 km AGL) | Variable (0.36
km at 0.5 km
AGL, 14.5 km
at 20 km AGL) | #### Continued need for aircraft studies (AVIRIS-NG, GAO) #### nature ### US oil and gas system emissions from nearly one million aerial site measurements Evan D. Sherwin^{1,6™}, Jeffrey S. Rutherford^{1,7}, Zhan Zhang¹, Yuanlei Chen¹, Erin B. Wetherley², Petr V. Yakovlev², Elena S. F. Berman², Brian B. Jones², Daniel H. Cusworth³, Andrew K. Thorpe⁴, Alana K. Ayasse³, Riley M. Duren^{3,4,5} & Adam R. Brandt¹ #### Science ### Quantifying methane emissions from United States landfills Daniel H. Cusworth^{1,2}*, Riley M. Duren^{1,2,3}, Alana K. Ayasse¹, Ralph Jiorle¹, Katherine Howell¹, Andrew Aubrey¹, Robert O. Green³, Michael L. Eastwood³, John W. Chapman³, Andrew K. Thorpe³, Joseph Heckler⁴, Gregory P. Asner⁴, Mackenzie L. Smith⁵, Eben Thoma⁶, Max J. Krause⁶, Daniel Heins⁶. Susan Thorneloe⁶ #### Recent campaigns: NASA SCOAPE-II (June 2024) - Gulf or Mexico, June 2024 - Lead by Ryan Stauffer (GSFC), support by Bureau of Ocean Energy Management - AVIRIS-3 sunglint observations for CH₄ from offshore platforms in coordination with ship measurements #### Recent campaigns: NOAA AiRMAPS NASA - Denver Julesburg Basin, July 2024 - Lead by Steven Brown (NOAA), support by Colorado Department of Public Health and Environment - AVIRIS-3 flights funded by US GHG Center in coordination with NOAA Twin Otter Mass Balance flights - >40 CH₄ plumes identified with AVIRIS-3 #### EMIT CH₄ data available through U.S. GHG Center #### Planned CH₄ and CO₂ airborne campaigns - CY 2024 - Controlled CH₄ release: EMIT & AVIRIS-3 coordinated observations [US GHG Center] - Coordinated observations: EMIT & AVIRIS-3 [US GHG Center] - Controlled CH₄ release: AVIRIS-3 [Carbon Mapper] - Urban flights (including Los Angeles): AVIRIS-3 [US GHG Center] - Coordinated observations: Tanager 1 instrument (Carbon Mapper Coalition) & AVIRIS-3 - CY 2025 [TBC] - Controlled CH₄ release: EMIT & AVIRIS-3/AVIRIS-5 coordinated observations [US GHG Center] - Coordinated observations: EMIT & AVIRIS-3/AVIRIS-5 [US GHG Center] - NOAA AiRMAPS (Pittsburg, Baltimore): AVIRIS-3/AVIRIS-5 [US GHG Center] - Support of NOAA, NIST, EPA, NASA needs: AVIRIS-3 /AVIRIS-5 [US GHG Center] - Coordinated observations: Tanager 1 instrument (Carbon Mapper Coalition) & AVIRIS-3/AVIRIS- #### Data products relevant to super-emitters Open science repositories: 1 https://github.co/emit-sds 2 https://github.com/emit-sds/emit-ghg