PICARRO

Industrial Applications of

CES Instruments

Applications, Advantages, Examples

Alejandro Farinas

Industrial applications of gas sensors

Advantages of CES in industrial applications

PICARRO

Design of an industrial sensor

Application examples

Industrial Applications – Overview

- Specialty gas
- Manufacturing
 - -Semiconductor fabrication
 - -LEDs
 - -Aerospace
 - -Fuel cells
 - -Purifier/catalyst development
 - -Pharmaceutical
- Industrial emissions
 - -Continuous emissions monitoring (CEM)
 - -Process control

Analytes and Matrices

Available analytes

- CH_4 H_2O H_2CO
- CO_2 NH_3 H_2O_2
- CO HF N₂O
- C_2H_2 HCI H_2S

Matrices

- Inerts: N₂, He, Ar, CO₂, air
- Mixtures
- Corrosives
- Reactive gases

Commercialized Cavity-Enhanced Technology

PICARRO

Cavity ring-down spectroscopy

Off-axis integrated cavity output spectroscopy

Tige Tige

Cavity ring-down spectroscopy

Optical feedback cavity enhanced absorption spectroscopy

Advantages of Cavity Enhanced Techniques

- Low detection limit
- Linear
- Selective
- Small sample volume
- Low drift
 - fewer calibrations
- Robust
 - reliable
 - transportable
- Easy to Use
 - small footprint
 - remote operation
- Low cost of ownership
 - no consumables
 - minimal gas usage

Displacement of Incumbent Technologies

Established/Potential Applications	Displaced technology
Continuous emissions monitoring (CEM)	Fourier Transform Infrared, non-dispersive infrared, gas filter correlation
	Proven technique for HCI CEM – validated by EPA and Electric Power Research Institute (EPRI)
Fuel cell hydrogen purity analysis	Gas chromatography
	ASTM D7941 / D7941M – 14 - Standard Test Method for Hydrogen Purity Analysis Using a Continuous Wave Cavity Ring-Down Spectroscopy Analyzer
Airborne molecular contamination cleanroom monitoring	Ion mobility spectrometry
Industrial process control	Gas chromatography, chemiluminescence, fluorescence
Semiconductor manufacturing	Electrochemical, chilled mirror
Air quality monitoring	Chemliuminescence (NO _x), fluorescence (SO ₂), ozone (UV photometer)
Food origin	Mass spectrometry (isotopic ratio analysis)

ΡΙCΔRRO

Technology Comparison: Trace Gas Analysis

	Measures a Few Compounds	Measures Multiple Compounds
Higher Performance	 TDL Low initial cost Higher cost of ownership Continuous measurements CES High initial cost Low cost of ownership Continuous measurements 	Chromatography High initial cost High cost of ownership Discrete measurements
Lower Performance	 NDIR Low initial cost Higher cost of ownership Continuous measurements Electrochemical Very low initial cost Continuous measurements 	 FT-IR High initial cost Lower cost of ownership Continuous measurements
	Typically Field Deployable	Typically Laboratory Based

Technology Comparison: Isotope Analysis

- IRMS
 - (+) High performance
 - (+) Flexibility
 - many compounds in a single instrument
 - (-) Selectivity

many interferences complicate sample prep and analysis

- (-) Expensive
- challenging to use and to maintain
- CES
 - (o) Good performance
 - (-) Flexibility
 - a given spectral region accesses a small subset of compounds
 - (+) Selectivity

identical mass isotopologues are easily distinguished (little or no sample prep)

(+) Inexpensive

easy to use and to maintain

ΡΙΟΛ Α Ο

Calibration Interval

 Require frequent calibration

– IRMS

- GC
- FT-IR

– TDL

- NDIR
- Electrochemical
- Require infrequent calibration
 - CES (especially CRDS)

50th Anniversary of the Global Carbon Dioxide Record Symposium and Celebration, Nov 2007 http://www.esrl.noaa.gov/gmd/co2conference/posters_pdf/hartnett_picarro.pdf

ΡΙCΛRRO

Selectivity

- Less selective
 - IRMS
 - FT-IR
 - NDIR
- More selective
 - GC
 - CES
 - TDL
 - Electrochemical

(top) Pharmaceutical Engineering 18, May/June 1998

Response Time

- Slow response
 - FT-IR
 - TDL
 - NDIR
 - Electrochemical
- Fast response
 - CES

"Qualitative Comparison of Cavity Ring-Down vs. Direct Measurement Absorption Spectroscopy for Determining ppb Moisture Levels in UHP Gases" Gases & Technology, May/June 2004

ΡΙCΛRRO

Commercialization Challenges

- Technology
 - Superior technology is often necessary at a startup but not always sufficient for success

- Flexible platform
 - The commercially successful application of a given technology is rarely known at the time of design

Commercialization Challenges

- Design for manufacturability
 - Product cost structure is mostly "baked in" at design
 - Labor
 - Tooling, process
 - Scrap, yield

ΡΙCΛRRO

Commercialization Challenges

- Reliability
 - Product lifetime
 - Surviving shipping is surprisingly difficult

- Test plan
- End of Life
 - Inventory
 - Support/Repair

Product Development

Market Penetration

- Time to adoption can be very long
 - A satisfactory solution is probably already in place
 - Introducing new sensors means changing the manufacturing process

ΡΙCΛRRO

Application: Drilling Ice Cores in the Arctic

Climate Archives in Ice Cores

Isotopes Provide Historical Temperature Information

See: Blunier and Brook, Science, Volume 291, 109-112, 5 January 2001

PICARRO

Commuting to a Glacier

CES Instruments in Greenland

H₂O isotope measurements

On line CH₄ measurements

(Not shown, prototype OF-CEAS CH₄/N₂O instrument)

Application: GHG Networks

- WMO's Global Atmospheric Watch (GAW) program provides reliable scientific data and information on the chemical composition of the atmosphere and helps to improve our understanding of interactions between the atmosphere, the oceans and the biosphere.
- Combines traditional flask sampling (e.g., NOAA's ESRL cooperative air sampling network) with in-situ high precision tower measurements

ΡΙCΔRRO

Flask Sampling

http://instaar.colorado.edu/arl/Global_VOC.html

The Mauna Loa CO₂ Record

http://scrippsco2.ucsd.edu/graphics_gallery/mauna_loa_record

Regional Networks

- "Measurements of greenhouse gases in Europe have suffered from heterogeneity, discontinuity and lack of sustainability in the long term"
- "Providing standardized and automated high precision measurements is therefore a key focus of ICOS"
- "Comparability of data is obtained through the use of measurement protocols and standardized instrumentation"

https://www.icos-ri.eu/

ΡΙCΛRRO

Intercomparability

- "Instruments in the field need to be stable and precise and thus require infrequent calibrations and a low consumption of consumables."
- "For about ten years, cavity ring-down spectroscopy (CRDS) analyzers have been available that meet these stringent requirements for precision and stability."
- "Newer models generally perform better than older models, especially in terms of reproducibility between instruments."

Yvor Kwak, et al., Atmos. Meas. Tech. Discuss., 8, 4219-4272 (2015)

Application: Airborne Molecular Contamination

- Product yield adversely affected by presence of airborne molecular contaminants (AMC)
- AMC critical during deposition, etching, and cleaning operations
- Key species
 - HF, NH_{3,} HCI
 - Key performance criteria
 - LDL sub-ppb
 - Speed of response
 - Stability
 - Ease of use
 - Cost of ownership
- Incumbent technologies ion mobility spectrometry, pulsed fluorescence

ΡΙCΛRRO

Comparison with Ion Chromatography

Nishimura et. al. "Real-time trace ambient ammonia monitor for haze prevention", Proc. of SPIE Vol. 6607, 66071Y, (2007)

Application: Bio-decontamination

- Used in pharmaceutical industry
 - Monitor VHP (Vapor Hydrogen Peroxide) concentration during bio-decontamination
 - Confirm removal of $\rm H_2O_2$ during aeration, some biological materials show sensitivity to in the ppb range

Detection Limit

Optimizing Throughput

Table I: Settings used for each cycle during performance qualification.

Steris VHP 1000ED biodecontamination system Airflow 20 SCFM

Phase I: Dehumidification	15 min and RH ${<}4.6$ mg/L
Phase II: Conditioning	2 min at 5.6 g/min
Phase III: Decontamination	34 min at 3.5 g/min
Phase IV: Aeration	2 to 5 hours

Bioquell Clarus "C" H₂O₂ gas generator

Airflow 500 L/min (~18 SCFM)

Phase I: Conditioning	10 min and 40% RH
Phase II: Ramp gassing	15 min at 1.5 g/min
Phase III: Dwell gassing	12 min at 1.1 g/min
Phase IV: Aeration	2.5 to 3 h

The cycle times listed above are the full cycle times. During the PQ, the VHP 1000ED's Phase III and the Clarus's Phases II and III were run at three quarters of the times listed above.

Application: Gas Leak Detection

Mobile Methane Detection

Methane Concentration Measurement

Sophisticated User Interface

Summary

- Ease of use and reliability are as important as sensitivity and drift
- Cost calculations must take into account the cost of operation, calibration, training, etc.
- Displacing an established technology is very difficult

