

Off-axis Integrated Cavity Output Spectroscopy for trace gas detection

F.Harren@science.ru.nl www.ru.nl/tracegasfacility Frans J.M. Harren

Radboud University Nijmegen The Netherlands

Motivation: Trace gas experiments

Laser spectroscopy on molecules

ν

vibrations

Molecule with N atoms has 3N-6 vibrational normal modes Rotations

Heavier atoms: Spectra become more compact and dense

Molecular spectral lines in the infrared

Selectivity

λ~10-11 µm

Each molecule has its own "fingerprint" absorption spectrum

Spectroscopy is very selective

Absorption

Lambert-Beer law:

Relates the absorbance α to a measurable quantity of relative change in intensity

$$I_t = I_0 e^{-\alpha(v)} \quad or: \quad \alpha(v) = -\ln\left(\frac{I_t}{I_0}\right)$$

$$\alpha(\nu) = S \cdot g(\nu, \nu_0) \cdot n \cdot L = \sigma \cdot n \cdot L$$

S line strength connecting ground and exited states

 $g(v,v_0)$ normalized line shape function (Gaussian, Lorentzian)

- v frequency light source,
- v₀ line center frequency molecule
- *n* density of the molecules (molecules per unit volume).
- *L* effective optical path length

The product $\sigma(v)=S \cdot g$ has the dimension of $[m^2]$ (or $[cm^2]$) and may be viewed as a cross section for absorption of a photon

NO absorption spectrum

Example

 $I_t = I_0 e^{-\sigma n l} = I_0 e^{-\alpha}$

Loschmidt number at 1 atmosphere and $0^{\circ}C \Longrightarrow 2.686 \times 10^{25}$ (molecules/m³)

 σ : absorption crossection (cm²)

n = N (volume mixing ratio) x Loschmidts number $(2.686 \cdot 10^{19} \text{ molecules/cm}^3)$

```
1 ppmv is just detectable using 9 s
integration
\sigma=4.4x10^{-19} cm<sup>2</sup>
/= 2000 cm
```

 $\alpha_{min}{=}$ 0.024 in 9 s

Noise

In most experiments technical noise sources, such as vibration of components in the lab, overwhelms the shot noise and degrades the sensitivity by many orders of magnitude

Improve sensitivity by modulation

Modulate a parameter

(e.g. laser wavelength, laser intensity)

 Use lock-in amplifier to isolate modulated signal from the noise

(phase-sensitive detection- band pass filter)

- Zero baseline technique measuring derivative
- Detection at high frequency,

low 1/f noise \rightarrow high signal-to-noise ratio

Allan variance to characterize the signal drift in laser spectroscopy

The Allan variance: known as two-sample variance

$$\sigma_{y}^{2}(\tau) = \frac{1}{2} \left\langle \left(\overline{y}_{n+1} - \overline{y}_{n} \right)^{2} \right\rangle$$

is a measure of stability in clocks, oscillators, amplifiers, etc

P. Werle, Appl. Phys. B 102(2011) 313–329

How to compare complete detection systems?

Independent measuring time (sec)

¹/₂ second integration time gives an output bandwidth of 1 Hz The SNR improves as the square root of the averaging time

For 9 s integration time gives factor $(18)^{1/2}$ SNR improvement

Minimal detectable absorption(MDA) = $\frac{(\alpha)_{\min}}{\sqrt{B}}$

Minimal detectable absorption (MDA) = $\alpha_{min} x$ (B)^{-1/2} = 0.024x (18)^{1/2} = 1x10⁻¹ Hz ^{-1/2}

Independent path length (sensitivity per cm) Length = 2000 cm Noise Equivalent Absorption Sensitivity

$$NEAS = \frac{MDA}{L} = \frac{(\alpha)_{\min}}{L\sqrt{B}}$$

NEAS = MDA/Length =
$$5 \cdot 10^{-5} \text{ cm}^{-1} \text{ Hz}^{-1/2}$$

Methods for increasing sensitivity

$$\alpha(v) = S \cdot g(v, v_0) \cdot n \cdot L = \sigma \cdot n \cdot L$$

Noise Equivalent Absorption Sensitivity

 $(cm^{-1}Hz^{-1/2})$

- Direct absorption 10⁻⁵
 Wavelength modulation spectroscopy 10⁻⁸
 Cavity Ring Down Spectroscopy 10⁻¹¹
 Integrated Cavity Output Spectroscopy 10⁻¹¹
 Photoacoustic Spectroscopy 10⁻⁹
- Laser Induced Fluorescence 10⁻⁸
 NICE-OHMS 10⁻¹⁴

Increasing effective path length: use optical cavities

interference of light within a Fabry-Perot cavity

Longitudinal modes cavity

$$\frac{I_t}{I_0} = \frac{1}{1 + F \sin^2(\delta/2)}$$
$$F = \frac{4R}{(1 - R)^2}$$
$$\delta = 4\pi n d \cos \Theta / \lambda$$

Maximum transmission at :

 $\sin(\delta/2) = 0$ or $\delta = 2m\pi$

$$\Delta v = \frac{c_0}{2nd} \qquad \text{Free Spectral Range}$$

Finesse
$$\Im = \frac{\Delta v}{\delta v} = \frac{Free \ Spectral \ Range}{FWHM} = \frac{\pi \sqrt{F}}{2}$$

F = 200

 3π

 2π

 π

0

 -2π

 $-\pi$

Figure 9.41 Airy function.

F = 200

 $4\pi \delta$

Specifications cavity R=0.99963 => F=18480 FSR=250 MHz $\Delta v = 14$ kHz

Cavity Ring Down Spectroscopy

Result: absorption

Isolating n:

$$n = \frac{1}{\sigma(\nu)} \frac{1}{c} \left(\frac{1}{\tau} - \frac{1}{\tau_0} \right)$$

Quantification of amount of substance in gas: development of metrology standard

Needed: faster continuous scanning combined with sensitive detection

Which detection scheme?

- CRD spectroscopy slow : 60 s to cross absorption line
- Use: Integrated Cavity Output Spectroscopy in its Off-Axis configuration (OA-ICOS)

Fast sampling approach: Integrated Cavity Output Spectroscopy

R=0.9998; Finesse=18480

$FSR{=}250~MHz~\Delta\nu=14~kHz$

On-axis

Off-axis

On-axis: Free Spectral Range

Off-axis: Multiple reflections before returning original position \rightarrow FSR collapses

- many cavity modes exist under molecular transition

Wavelength

Integrated Cavity Output Spectroscopy

Off-axis ICOS

Robust alignment at the cost of cavity throughput power

Engel et al., Applied Optics 45 (2006) 9221

Detection with infrared Optical Parametric Oscillator

Singly-Resonant, cw OPO

Tuning range: 2.75–3.83 µm and 1.47–1.73 µm, 1 Watt Pump system:

DBR diode laser: 80 mW, 1082 nm, 40 MHz linewidth,

Scan speed up to 100 THz/s; End-pumped fiber-amplifier: 25 W, 976 nm

Ngai et al., Appl. Phys. B, 85 (2006) 173–180

Experimental set-up

How is the S/N ratio changing with off-axis parameter?

20 ppbv C₂H₆ at 2997 cm⁻¹

2 inch mirrors pressure 170 mbar scanning rate 1 KHz

1 ppbv of C_2H_6 , at 2997 cm⁻¹, 250 mbar

1 inch mirrors

R=99.98%

P= 250 mW

100 Hz scanning rate

250 averages

2.5 s integration time

How is the S/N ratio with scan speed?

20 ppbv C₂H₆ 2997cm⁻¹

32 Hz

500 Hz

2000 Hz

20 mm off-axis pressure 170 mbar P = 500 mW

Fixed integration time ~ 0.25 s

How is the S/N ratio with scan speed?

20 ppbv C₂H₆ 2997cm⁻¹

20 mm off-axis

Noise-equivalent detection limit: 50 pptv in 0.25 s (1 kHz) MDA = $1.7x \ 10^{-6} \ \text{Hz}^{-1/2}$

NEAS = $4.8 \times 10^{-11} \text{ cm}^{-1}\text{Hz}^{-1/2}$

Arslanov et al, Opt. Lett. 35, 3300 (2010)

Why fast detection?

Sampling from a single breath

Breath measurements

- Enormous potential, because of:
 - its inherent safety/minimum risk
 - non invasive, real-time
- Collection can be from neonates
 - to very elderly or very ill patients

Source of exhaled gases

- from the blood via the alveolar-capillary junction in the lungs
- from mouth, nose, sinuses, airway and gastro-intestinal tract
- Exogenous origin: inspiration air, ingested foods

and beverages, via the skin

Concentration levels in breath

Concentration	Molecule
Percentage (%)	oxygen, water, CO ₂
Parts-per-million (ppmv):	acetone, CO, methane, hydrogen
Parts-per-billion (~ ppbv):	formaldehyde, acetaldehyde, isoprene, pentane, ethane, ethylene, NO, carbon disulfide, methanol, ammonia, dimethylsulfide, etc.
Part per trillion (pptv, 1:10 ¹²)	unknown biomarkers

- There are about 1200 different gases in exhaled breath

However composition and concentration gases

varies per subject and condition

Breath sampling of ethane (C₂H₆)

On-line breath sampling of ethane (C_2H_6)

On-line breath sampling of ethane (C_2H_6)

Long-term measurements, wash out the blood and fat tissue

Approved clinical breath tests

- Ethanol: law enforcement
- CO test for neonatal jaundice
- H_{2:} gastro-intestinal tract (bacterial overgrowth, transit time)
- Taking substrate to exhale labeled ¹³CO₂
 - Urea: Helicobacter pylori infection stomach
 - Glucose: insulin resistance
 - Linoleic acid: fatty acid metabolism
- NO: asthma

NO concentration indicates degree of inflammation

(> 15 ppbv)

- upper airway : 0.2 1 ppmv
- lower airway : 1 10 ppbv
- nasal cavities: 1 30 ppmv

How to measure NO? Flow dependent, modeling NO exchange

3 parameters:

- steady-state alveolar concentration: C_ANO (ppb)
- mean airway tissue concentration of NO (wall concentration): C_{AW}NO (ppb)
- diffusing capacity in the airways:
 D_{AW}NO (pl · s⁻¹ · ppb⁻¹)

George et al. J Appl. Physiol. 96: 831-839 (2004) Trumpet Model, J. Appl. Physiol. 102: 417-425 (2007)

Cristescu et al., J. of Breath Research 7 (2013) 017104

Flow dependency exhaled NO

Exhaled NO originates from various respiratory locations Concentration is flow dependent

QCL-based detection of Nitric Oxide

Source: TEC cw QCL @5.26 µm

<u>Detector</u>: 4 stage TEC, (HgCd)Te $D^* = 3 \cdot 10^{11} \text{cm} \cdot \text{Hz}^{1/2} \cdot \text{W}^{-1}$

<u>Mirrors</u>: R: 99.93 % @5.26 µm effective path length 400 m

Marchenko et al., Appl. Phys. B 111 (2013) 359

Detection limit: 0,7 ppbv in 1 s Ultimate detection limit - 100 pptv in 128 s averaging time

Comparison with chemiluminescence device

Chemiluminescence

n=40

Bacterial lung infection

Cystic Fibrosis

- most common lethal genetic disease (1:4000 Caucasian children)

Bacteria: Pseudomonas Aeruginosa

- produce HCN
- most common infection in CF patients
- connection between *Pseudomonas* infection and irreversible lung function loss in Cystic Fibrosis
- Causes gradual decline in lung function parameters
- Best predictor for morbidity and mortality

Cystic fibrosis is a hereditary disorder characterized by lung congestion and infection and malabsorption of nutrients by the pancreas

*ADAM

Early recognition and treatment of respiratory infections are crucial for optimal prognosis of CF patients

Spectroscopic detection of Hydrogen Cyanide

However: with biomedical applications: high water and CO₂ content

With biomedical applications: high water and CO₂ content

Detection limit:

0.4 ppbv HCN in 10 s (P8, v3 band) at 3287.25 cm⁻¹

Arslanov et al., J. Biomedical Optics 18 (2013), 107002

Culture Pseudomonas Aeruginosa

Treatment with antibiotics

Is this the right antibiotics for this specific culture? Immediate response

Golden standard

- observe growth (over days)
- count colony forming units
- Time consuming
- Manpower consuming

Addition of Tobramycin strongly reduces HCN production by *P. aeruginosa*

Clinical breath test study

1575

1580

Docter et al., IEEE J. Sel. Top. Quan. Electron. **16** (2010) 1405

Test setup based on the laser from VTEC

Tuning range 1528–1563 nm Laser output power 20 mW @1531 nm FRS = 500 MHz HR mirrors 99.8% @1570 nm Pressure 250 mbar Scanning rate 5 kHz

HCN detection limit

Acknowledgements

Financial support

Yuwei Jin Denis Marchenko Simona Cristescu Anne Neerincx Maria Kiseleva Azhar Mohiudeen Faisal Nadeem

Raymund Centeno Devasena Samudrala Julien Mandon Yuwei Jin Phil Brown Nahid Pakmanesh

Cooperating Partners

Detectivity infrared detectors

