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(1) Motivation 

for broadband cavity-enhanced  

absorption techniques



Desirable features of a 

spectroscopic absorption 

experiment?

• Sensitivity long (eff.) absorption path length

• Selectivity unambiguous species identification

• Speed high time resolution

• Quantitative and Direct Methodology

• Simplicity / Robustness / Reliability

• Versatility



Why broad spectral coverage?

Many systems exhibit genuinely broad 

extinction features.

Examples:

• Absorption in liquids

• Absorption on surfaces/interfaces and in thin films

• Scattering losses

• Inherently broad gas phase absorptions 

(UV/vis region, dissociative states, high pressures …)



It enables the identification of multiple 

contributions to the extinction on basis 

of the spectrum alone. 

• Several species detectable

• Loss processes easier identifyable

Why broad spectral coverage?

Depending on approach:

• High time resolution possible (enables kinetic studies)

• High spectral resolution (at the expense of speed)



Literature: extreme examples 

• Free electron laser:  5.380 – 5.381 m 

(scanned spectrometer)                    [Crosson et al. (2002)]

• Xe arc-lamp: 390 – 620 nm             [Ruth & Lynch (2008)]

Limitation:

• High reflectivity range of mirrors
The higher the mirror reflectivity the narrower the range of high reflectivity

• Generally spectral resolution – trade off
The higher the dispersion the narrower the range that can be detected    

(Exceptions: Fourier transform detection, Echelle spectrometer)

How broad is ‘broadband’?

New Approach: Prism Cavity    [Johnston & Lehmann 2008)]



(2) Experimental Principles



General idea based on superposition principle:
See: K.K. Lehmann, D. Romanini, J. Chem. Phys. 105 (1996) 10263-10277.

At any given time incoherent light (or spectrally

broad light of limited temporal coherence) contains

frequencies that correspond to eigenmodes of a

cavity for a given geometry (i.e. for given cavity

length, mirror radius of curvature, mirror diameter).

“The cavity lets the light in that can go in.”

The coupling efficiency may be low.  

Broadband Cavity-Enhanced Methods



Multiplexing advantage: 

(A) No scanning of wavelength required (in principle)

(B) High time resolution for wide spectral ranges

Broadband Cavity-Enhanced Methods

 dispersion 
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Measurement principle:

(A) Spectrally broad light coupled into cavity

(B) Dispersion of wavelength after the cavity



Overview of experimental components

A.A. Ruth et al. Springer Series in Optical Sciences, Vol. 179 (2014)



Time dependent measurement: 

Cavity ring-down spectroscopy (CRDS)
 Light sources generally pulsed

Intensity dependent measurement:

Cavity enhanced absorption (CEAS) 

[Integrated cavity output spectroscopy (ICOS)]
 Light sources generally continuous wave (cw)

Phase dependent measurement:

Cavity attenuated phase shift (CAPS) spectroscopy or (PS-CRDS)

 Light sources pulsed or modulated

Broadband  methodologies



Methodology overview



(2a) Measurement Principle

Broadband 

Cavity Ring-Down Spectroscopy         

(BB-CRDS)

Original idea and demonstration of CRDS:

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59 (1988) 2544-2551.

Early broadband demonstration:

- E. R. Crosson et al., Rev. Sci. Instrum. 70 (1999) 4-10.

- S. M. Ball et al., Chem. Phys. Lett. 342 (2001) 113-120.
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Approach works fine for enclosed cavities !

In open path studies absolute 

measurements are based on 

assumptions concerning the 

“reflectivity baseline”.

This point is not necessarily 0
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Broadband CRDS setup schematic
From: M. Bitter et al.,  Atmos. Chem. Phys. 5 (2005) 2547-2560.



Broadband CRDS setup schematic
The North Atlantic 

Marine Boundary 

Layer EXperiment

NAMBLEX   

(2002)

From: M. Bitter et al.,  Atmos. Chem. Phys. 5 (2005) 2547-2560.



(2b) Measurement Principle

(Incoherent) Broadband 

Cavity Enhanced Absorption Spectroscopy         

(IBB-CEAS)

Early CEAS idea of absorption amplification before CRDS: 

P. K. Dasgupta and J. S. Rhee,  Anal. Chem. 59 (1987) 783-786.

Experimental demonstration:

S. E. Fiedler et al., Chem. Phys. Lett. 371 (2003) 284-294.



Conventional Absorption-

spectroscopy
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Absorption spectroscopy using 
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Absorption spectroscopy using 

optical cavities
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P = pressure gauge

M = mirrors

F = filter (bandwidth)

CCD = charged coupled device detector

LED = light emitting diode

Incoherent broadband CEAS setup 

schematic

Lab setup (closed path):

I, I0

LED

Arc lamp

Calibration of R via gas of known pressure and cross-section !
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Incoherent broadband CEAS setup 

schematic



(3) Light sources



Light sources

(A) Lamps

(B) Light emitting diodes

(C) Pulsed lasers

(D) Super continuum sources

(E) Frequency combs[

[



(A) Lamps

• Very wide spectral coverage: UV to IR

• High flexibility / tunability

• Good intensity stability (1-2 %)

• Reasonably compact 

• Power consumption (if low)

+

- • Non directional (requires imaging)

• Extended light source 

• Brightness (depending on lamp)

• Rigorous spectral filtering required

• May have emission lines (depending on lamp)

• Power consumption (if high) / water cooling

Short-arc (Xe), thungsten, halogen lamps
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(B) Light emitting diodes
High power LEDs or small arrays

super luminescence LED

+

-

• Very compact / robust

• Cheap

• Low power consumption

• Low spectral filtering constraints

• Low brightness 

• Very large divergence

• Extended light source requires imaging

• Rather limited spectral coverage

• Limited UV applications

• Not particularly wide spectral range
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+

-

• Directional 

• High power density

• No rigorous spectral filtering required

Amplified spontaneous emission (ASE) dye laser

Short pulse (fs) sources

• Shot-to-shot fluctuations 

• Not in applicable in cw available

• Generally not compact

• Generally expensive

• Low flexibility (dye changes) 

• Not particularly wide spectral range

(C) Pulsed Lasers



(D) Super Continuum Sources

+

-

• Directional 

• High power density

• Wide spectral coverage 

Laser pumped nonlinear crystal fibre

• Large shot-to-shot fluctuations / very noisy

• Not in cw-available (yet)

• No deep blue or UV available (yet)

• Still rather expensive

• Rigorous spectral filtering required

• Operation critical around seed wavelength
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Example: Super Continuum Spectrum



General detection schemes

CEAS:

• Monochromator / Charged Coupled Device (CCD)   

• Fourier Transform detection 

CRDS:

• Monochromator / clocked or gated CCD

• Fourier Transform detection

CAPS:

• Lock-in amplifier

• Fourier transform detection

Vernier spectroscopy  !

Determines the spectral and temporal resolution



(4) An Applications

Broad band cavity-enhanced total 

internal reflection spectroscopy



Publications

Broadband evanescent wave spectroscopy:

1. A. A. Ruth and K. T. Lynch, Phys. Chem. Chem. Phys. 10 

(2008) 7098-7108.

2. M. Schnippering et al., Electrochem. Comm. 10 (2008) 1827-

1830.



n2 < n1

n1

total internal 

reflection

Evanescent wave absorption

Evanescent wave
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Broad band cavity-enhanced total 

internal reflection setup
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(1) Measurement without sample on prism – I1 :

(2) Measurement with sample on prism – I2 :

I0 is a fictitious intensity 

of an empty cavity

Combining eq. (1) and (2) yields:

The sample loss L in a folded cavity

The prism loss Lprism and R
must be independently 

established !



Measurement of R and Lprism
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(B)
(A)

Evanescent Wave
Solvent

Broad band cavity-enhanced total 

internal reflection setup

Depending on angle of incidence a solution layer can be probed 

or a functionalized surface !
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