Implementing Lightning-NO_x Production For Studies Of Thunderstorms And Chemistry

Mary Barth, Jeff Lee, Alma Hodzic

NCAR, Boulder, Colorado contact: <u>barthm@ucar.edu</u>

Acknowledgments:

- Ken Pickering, Lesley Ott, Christelle Barthe for early work on implementing the scheme into WRF
- Gabriele Pfister, Louisa Emmons, Christine Wiedinmyer for assistance in configuring simulation

Motivation

To understand the influence of convection on the chemistry and composition of the upper troposphere, representing convective transport and production of nitrogen oxides $(NO_x = NO + NO_2)$ by lightning is important.

- A high resolution WRF-Chem simulation ($\Delta x=4$ km) is being conducted to investigate the role of the North American monsoon in affecting ozone and its precursors.
- Here we focus on the production of NO_x from lightning and its contribution to NO_y in the troposphere

North American Monsoon Simulation – WRF-Chem model setup

 WRF-Chem simulation performed for the time period of July 10 to July 23, 2006, at 4 x 4 km² horizontal resolution over US.

Model Description

Physics

- Single moment cloud physics (Lin et al. 1983)
- Mellor-Yamada-Janjic PBL parameterization
- NOAH land surface model
- Rapid Radiative Transfer Model for long wave radiation
- Goddard scheme for short wave radiation
 - Allows aerosols to feed back to radiation heating and meteorology

Dynamics

- Runge-Kutta time integration method
- Positive definite, monotonic advection for water, scalars, and chemistry species

Model Description

Chemistry

- RACM (fast-TUV) gas-phase chemistry & MADE/SORGAM aerosols
- Anthropogenic emissions: US EPA NEI-05 + Mexico NEI
- Biogenic emissions: MEGAN online calculation
- Wildfire emissions (Wiedinmyer et al. 2006): MODIS locations and Plume-rise (Freitas et al. 2005).
- Aircraft emissions: 1999, 1x1 annual average
- Wet and dry deposition
- Aerosols feed back to radiation heating in meteorology
- Lightning-generated nitrogen oxides

Lightning NO_x Parameterization for the North American Monsoon simulation

- 1) Lightning flash rate is predicted:
 - > $FR = 5.7 \times 10^{-6} w_{max}^{4.5}$ (Price and Rind, 1992)

Note: w_{max} is meant to be for each storm; We calculate it for each WRF tile, which is ~172 km x 128 km sized regions

2) Partition between intracloud (IC) and cloud-to-ground (CG) flashes based on Boccippio et al. (2001) climatology

That is, region between 90W and 105W has IC:CG = 3.5; other regions IC:CG = 1.5

4.0

3.0 2.5 2.0

1.5

Lightning NO_x Parameterization for the North American Monsoon simulation

- 3) Find region of reflectivity > 20 dBZ (DeCaria et al., 2000)
 - Distribute NO horizontally within this region
- 4) Distribute NO vertically using a curve
 - CG flash: Gaussian distribution
 - IC flash: Bimodal distribution

5) Amount of NO produced per flash

This is based on average found in Schumann and Huntrieser (2007) review.

Evaluation of NO_x at monitoring sites located between 22-50N and 120-65W

WRF-Chem reproduces nighttime observations well, but overpredicts observations during daytime.

Example Results* from North American Monsoon (NAM) 2006 Case – Upper Troposphere

Max Reflectivity (dBZ

Much of the high NO_x concentrations in the upper troposphere is due to lightning

NOx (ppbv) at 10 km Wind (kts) at 10 km

*All results for: 21 July 2006 at 2100 UTC
(2 pm west coast, 5 pm east coast

Example Results – Upper Troposphere

5

15

20 25 30 35 40 45 50 55 60 65

Example Results – Vertical Cross-Sections

- Lightning-NO_x important in the UT, which contributes to NO_y
- Clean air from Canada moving southward behind front

Example Results – 2 km Altitude

30°N

25°N

20°N

80°W

80°W

fraction

.01 .02 .05 .07 .1 .2 .5 .7

Lightning NO_x tracer is <10% of NO_y near top of BL

Example Results – Amount of Lightning NO_x in 0-2 km altitude range

Average daily input of N into 0-2 km altitude range	
Anthropogenic Emissions	4.665x10 ⁸ kg N/day
Lightning Production	3.4x10 ⁴ kg N/day

Over a 9 day period, the influx of nitrogen oxides from lightning into the lowest 2 km of the atmosphere is negligible compared to the anthropogenic emissions

Summary

- Production of NO_x from lightning is now included in WRF-Chem for cloud resolving scales
- The Lightning NO_x primarily affects the upper troposphere this is in agreement with Kaynak et al. (2008) ACP who found that the impact of lightning NO_x on surface O₃ was small (<2 ppbv for 71% of cases)

