### On Hybrid Approaches to Data Assimilation

Adrian Sandu Computational Science Laboratory Computer Science Department Virginia Tech





## Information feedback loops between CTMs and observations: data assimilation and targeted meas.



# Assimilation adjusts $O_3$ predictions considerably at 4pm EDT on July 20, 2004

Observations: circles, color coded by O<sub>3</sub> mixing ratio



[Chai et al., 2006]



IWAQFR, December 3, 2009



## Model predictions are in better agreement with observations after assimilation



[Chai et al., 2006]



IWAQFR, December 3, 2009



## The smallest Hessian eigenvalues (vectors) approximate the principal error components

$$\left(\nabla^2_{y^0,y^0}\Psi\right)^{-1} \approx \operatorname{cov}(y^0)$$

|              | First    | Second   | Third    | Fourth   | Fifth    |
|--------------|----------|----------|----------|----------|----------|
| λ(Η)         | 7.54e-25 | 1.15e-23 | 4.04e-23 | 8.47e-23 | 1.42e-22 |
| λ(Ρ)         | 1.33e+24 | 8.70e+22 | 2.48e+22 | 1.18e+22 | 7.04e+21 |
| STD<br>(ppb) | 47       | 3        | 0.87     | 0.41     | 0.25     |

Tech





IWAQFR, December 3, 2009

### **4D-Var Data Assimilation of TES (Satellite) Ozone Profile Retrievals with GEOS-Chem**



Plots from difference between background ozone field and analysis ozone field through TES profile retrievals for 2006 summertime GEOS-Chem data



IWAQFR, December 3, 2009

Virginia

ech

### Validation of GEOS-Chem Background and Analysis Against IONS Ozonesonde Profiles



IWAQFR, December 3, 2009

## Ensemble-based chemical data assimilation can complement variational techniques



# Covariance inflation and localization are necessary to compensate for small ensemble size

### **Covariance inflation:**

- Prevents filter divergence
- Additive
- Multiplicative
- Model-specific

### **Covariance localization:**

 Limit long-distance correlations according to NMC empirical ones

### **Correction localization:**

 Limit increments away from observations



### Ozonesonde S2 (18 EDT, July 20, 2004)

Virginia

lech



## LEnKF assimilation of emissions and boundaries together with the state can improve the forecast

Ground level ozone at 14 EDT, July 21, 2004 (in forecast window)

LEnKF (R<sup>2</sup>=0.88/0.32) [state only] LEnKF (R<sup>2</sup>=0.88/0.42) [state + emissions + boundary]

lèch





IWAQFR, December 3, 2009

Pros:

- considers all observations within one assimilation window at the same time
- generates analysis that is consistent with the system dynamics
   Cons:
  - assumes constant background covariance matrix at the beginning of each assimilation window
  - requires building the adjoint model

#### **EnKF** Features

Pros:

- simple concept, easy implementation
- updates system states and covariance
- no adjoint model required

Cons:

- non-smooth analysis state flow
- sampling error is large in large-scale models

#### Questions

- Can we better understand the relationship between variational and ensemble based methods for data assimilation?
- Can we use this understanding to build hybrid assimilation methods that combine the strengths of both approaches?

### Hybrid Approach for Error Covariance Update

- Problem: The background error covariance matrix is kept constant between 4D-Var assimilation windows.
- Solution: Update the error covariance matrix at the end of each assimilation window.
- Procedure:
  - Explore the 4D-Var error reduction directions.
  - Generate a space spanned by the error reduction.
  - Project the ensemble background perturbation on the orthogonal complement of the space.
- The background ensemble runs can be performed in parallel with 4D-Var without incurring a significant computational overhead.

#### Background Ensemble Generation

Generate a set of Nens normally distributed perturbations with mean zero and covariance B<sub>tn</sub>:

$$\Delta x_i^b(t_0) \in \mathcal{N}(0, B_{t_0}) \ , \ i=1,\ldots$$
 Nens .

Construct a background ensemble of size *Nens*:

$$x_i^b(t_0) = x^b(t_0) + \Delta x_i^b \;,\;\; i = 1, \dots,$$
 Nens .

Propagate this ensemble to the end of the assimilation window.

$$x_i^b(t_1) = \mathcal{M}_{t_0 
ightarrow t_F}\left(x_i^b(t_0)
ight), \;\; i = 1, \dots, N_{ens}$$

Compute the mean x<sup>b</sup>(t<sub>1</sub>) and background ensemble perturbation:

$$\Delta x_i^b(t_1) = x_i^b(t_1) - x_i^b(t_1)$$

4D-Var optimization generates iterates

$$x_0^{(j)}$$
;  $x_1^{(j)} = \mathcal{M}_{t_0 \to t_1}(x_0^{(j)}), \quad j = 1, \dots k.$ 

The space spanned by the normalized 4D-Var increments

$$\mathcal{S}_{t_1} = \left[ \frac{x_1^{(j)} - x_1^{(j-1)}}{\left\| x_1^{(j)} - x_1^{(j-1)} \right\|} \right]_{j=1,\dots,k} \approx \operatorname{span} \left\{ U_{t_1} \right\}$$

• Orthogonal projector onto the orthogonal complement of  $U_{t_1}$ :

$$\mathcal{P}_{t_1} = I - U_{t_1} U_{t_1}^T$$

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Projected ensemble:

$$\Delta x_i^p(t_1) = \mathcal{P}_{t_1} \Delta x_i^b(t_1)$$

Karhunen-Loève decomposition of approximate Hessian inverse leads to approximate analysis perturbation:

$$H^{-1} = \sum_{j=1}^d \lambda_j w_i w_j^T, \quad \Delta x_i^{Hess} = \sum_{j=1}^d \xi_j^i \sqrt{\lambda_j} w_j, \quad \xi_j^i \in \mathcal{N}(0,1).$$

Hybrid ensemble:

$$\Delta x_i^h(t_F) = \Delta x_i^p(t_F) + \Delta x_i^{Hess}(t_F).$$

Compute hybrid ensemble covariance matrix:

$$\widehat{B}_{t_F}^h = \frac{\left(\Delta x_i^h\right) \cdot \left(\Delta x_i^h\right)^T}{\sqrt{Nens - 1}}.$$

Localize hybrid ensemble covariance matrix:

$$B^h_{t_F} = 
ho \otimes \widehat{B}^h_{t_F}$$

 Updated background covariance through a convex combination of the static background covariance B<sub>0</sub> and the hybrid covariance B<sup>h</sup><sub>tr</sub> as:

$$A_{t_F} = \alpha \cdot B_0 + (1 - \alpha) \cdot B_{t_F}^h ,$$

#### Numerical Tests on Lorenz 96 Model

$$rac{dx_j}{dt} = -x_{j-1}(x_{j-2} - x_{j+1} - x_j) + F \ , \ \ j = 1, \dots 40 \ ,$$

periodic boundary conditions, F = 8.0.

The background covariance  $B_{t_0}$  is constructed from a 3% perturbation of the initial state, and a correlation distance of L = 1.5:

$$B_{t_0}(i,j) = \sigma_i \cdot \sigma_j \cdot \exp\left(-\frac{|i-j|^2}{L^2}\right), \quad i,j=1,\ldots, 40$$

The observation covariance matrix is diagonal from a  $\rho = 1\%$  perturbation from the mean observation values. The observation operator  $\mathcal{H}$  captures only a subset of 30 model states, which includes every other state from the first 20 states plus the last 20 states.

### Analysis RMS Error Comparison



Figure: Analysis RMSE comparison for seven assimilation windows, using different background covariance matrices (static and hybrid covariances with localization length L = 5, and blending factor  $\alpha = 0.2$ ; P is projection only, P+H is projection with Hessian enhancement).

For  $x_0 \in \mathcal{N}(\mathbf{x}_0^B, \mathbb{B}_0)$ . A linear, invertible model solution operator **M** advances the state from  $t_0$  to  $t_F$ ,

$$\mathbf{x}(t_F) = \mathbf{M} \cdot \mathbf{x}(t_0)$$
 .

The mean background state and the background covariance at  $t_F$  are

$$\mathbf{x}_F^B = \mathbf{M} \cdot x_0^B , \quad \mathbb{B}_F = \mathbf{M} \cdot \mathbb{B}_0 \cdot \mathbf{M}^T$$

A set of noisy measurements taken at  $t_F$  (a single 4D-Var assimilation window).

$$\mathbf{y}_{F} = H \cdot \mathbf{x}_{F} + \varepsilon_{F} , \quad \varepsilon_{F} \in \mathcal{N}(0, \mathbb{R}_{F}).$$

#### Proposition:

- If the model is linear and invertible; the errors are Gaussian; and observations are taken at a single time at the end of the assimilation window;
- Then the numerical solution obtained by (imperfect, preconditioned) 4D-Var is equivalent to that obtained by the EnKF method with a small number of ensemble members.

### The Analysis Motivates a Hybrid Approach

 Run a <u>short window</u> 4D-Var, and perform K + 1 iterations. The space spanned by the direction increments has an orthonormal basis

 $\widetilde{v}_1, \cdots, \widetilde{v}_K$ 

- 2 Generate EnKF ensemble of K members. Replace the random sample from the normal distribution with K directions from the 4D-Var increment subspace (properly scaled).
- **3** Run EnKF for longer time.
- 4 Re-generate directions by another short window 4D-Var, and repeat.

#### Tests with the Nonlinear Lorenz Model



Figure: Solution comparison (with 10 ensemble members) for the first two components of the Lorenz state vector. Hybrid EnKF uses 4D-Var directions obtained from 0.2 time units.

#### Tests with the Nonlinear Lorenz Model



Figure: RMSE comparison for 10 ensemble members. Hybrid EnKF uses 4D-Var directions obtained from 0.2 time units. Errors shown are averages of 1000 runs.

### Summary

- Can we better understand the relationship between variational and ensemble based methods for data assimilation?
- Can we use this understanding to build hybrid assimilation methods that combine the strengths of both approaches?
- Hybrid approach to improve background covariance
- Hybrid filter based on 4D-Var directions