

ACCLIP UT/LS Chemical Tracers:

Enhancing Methane Data Coverage

Teresa Campos, Kate Smith and Elliot Atlas
NCAR EOL/RAF and ACOM/ESS, NOAA CSL, and U Miami
April 30, 2024

Analytical Tools

Advanced Whole Air Sampler (AWAS)

- Preparation included surface passivation with ~15 Torr water vapor
- Similar collection systems were installed on both GV and WB-57 platforms
- Max samples per flight: 56 (GV) and 50 (WB-57)

WAS teams: Elliot Atlas, Sue Schauffler, Victoria Treadaway, Kate Smith, Roger Hendershot, Rich Lueb, and Stephen Donnelly

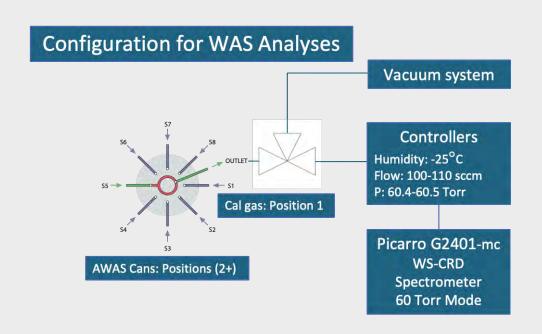
uncertainty specifications:

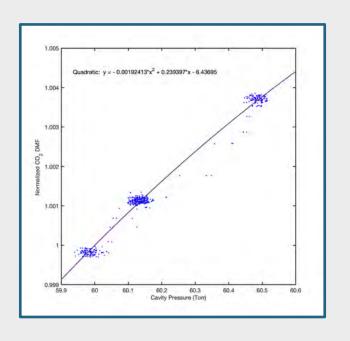
PLATFORM	CANISTER VOLUME (L)	ALTITUDE (KM)	FILL TIME (S)	CANISTER MAX P (PSIA)
WB-57	1.3	10	14	40
		20	120	50
G-V	1.0	<5	4	40-45
		12-15	26	40-45
	1.3	12-15	40	40-45

NCAR Carbon Dioxide, Carbon Monoxide, Methane and Water Vapor Sensor

NCAR GV Picarro G2401-mc: custom low pressure mode for high altitude operation

Moscurand

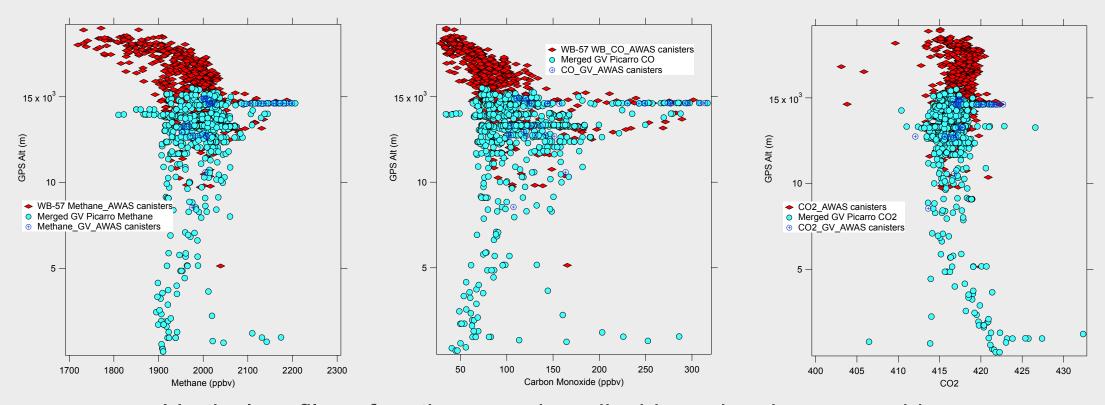

 H_2O (µmol/mol)


NCAR staff modified spectral scan protocols to achieve 2-s temporal resolution with resultant

uncertainty specifications:	Measurand	LLOD	Precision (1-min,1σ)	Uncertainty (± 2σ)
NCAR Carbon Picarro Team: Teresa	CO ₂ (µmol/mol)	0.1	0.03 (typical)	± 0.1
Campos, Ed Kosciuch and Kirk Ullmann	CH ₄ (nmol/mol)	3.0	0.5	± 3
	CO (nmol/mol)	5	5	5 ± 0.1%

± 5%

WAS – Picarro Interface and Experimental Conditions

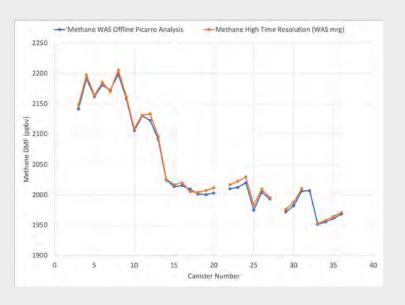


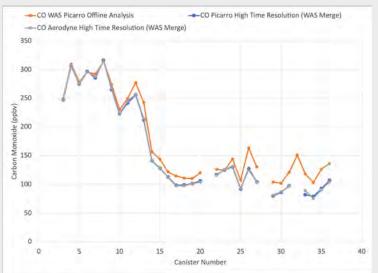
- Sample duration: 2 minutes -> ~ 250 mL gas used and a ~ 3 psig drop in can pressure
- Calibration details:
 - Working standard quantification: 3 replicates of multipoint (4) lab cals traceable to WMO network Single standard run through WAS manifold with each measurement set of ~29 canisters Pre- and post-run standard checks bypassing WAS manifold
- Cavity P dependence characterized to improve measurement accuracy; transfer curve shown above

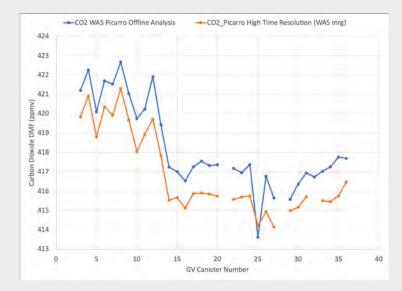
Quality Assessment

Vertical profiles of methane, carbon dioxide and carbon monoxide:

Red diamonds: WB-57 canister observations


Aqua circles: WAS merge of G-V high time resolution observations

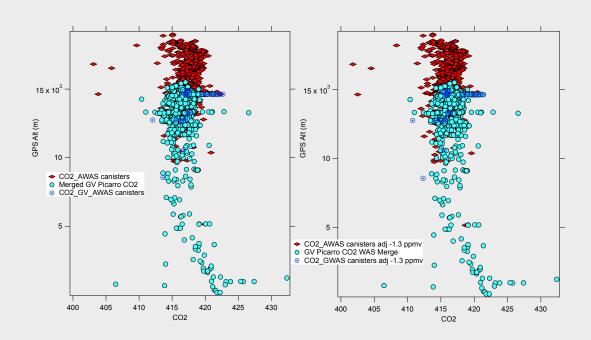

Royal blue circled plus markers: G-V canister measurements


G-V canister analyses provided a means of method evaluation

Quality Assessment

Signals are highly correlated

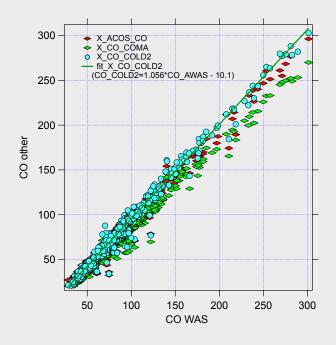
Systematic differences were observed for each species measured


Differences are independent of RH, Picarro cavity P, and Concentration measured

Each has a constant offset of varying magnitude

	CO_2	CO	Methane
	(μmol/mol)	(nmol/mol)	(nmol/mol)
Mean Diff	-1.4	-2.1	-4.4
Std	0.5	18.8	3.3
Min	-2.2	-38.4	-10.4
Max	0.6	27.9	4.0

Quality Assessment



A closer look at CO2 data quality:

Plots above show the impact of applying a -1.3 ppmv shift on CO₂ agreement

GV and WB offsets cannot be assumed or expected to be the same

WB-57 measured CO2 < 410 ppmv: likely a problem with these measurements

Reasonably favorable intercomparison between WB-57 canister CO and three WB-57 high temporal resolution CO instruments.

COLD2 team: Silvia Viciani, Giovanni Bianchini, and

Francesco D'Amato

ACOS team: Colin Gurganus

COMA team: Laura Iraci, Jim Podolski, Emma Yates

Summary

- The NCAR Picarro G2401-mc instrument was configured to quantify methane, carbon monoxide and carbon dioxide dry mole fractions within the ACCLIP WB-57 Whole Air Sampler canisters.
- Select GV canisters were also analyzed to provide method evaluation.
- GV canister and high temporal resolution CH₄ and CO measurements agree within a few ppbv on average with modest precision reduction.
- WB-57 canister and continuous measurements of CO show reasonably good agreement.
- Carbon dioxide WAS measurements track well, but exhibit a significant offset from GV high resolution observations. The offset is independent of humidity, pressure and CO₂ concentration. Estimated overall uncertainty of CO₂ observations by this method is therefore estimated at ±1.5 ppmv.
- Validated offline WB-57 WAS canister CH₄ have been added to the ACCLIP data archive.

