Observations of HDO/H₂O ratio in the ACCLIP campaign

Ben Clouser

University of Chicago

Liz Moyer, Carly KleinStern, Adrien Desmoulin, Clare Singer, Laszlo Sarkozy Engineering: Steve Shertz, Steve Gabbard (NCAR), Vic Guarino (U Chicago)

Photo: NASA (ISS)

Outline

- Background
- Planned Papers
 - NAM Case Studies
 - AM-NAM Isotopic Comparison and Summary
 - Microphysical Modeling of Water Isotopes
- Conclusions

Outline

- Background
- Planned Papers
 - NAM Case Studies
 - AM-NAM Isotopic Comparison and Summary
 - Microphysical Modeling of Water Isotopes
- Conclusions

Instrument Performance

ChiWIS at a glance

ACCLIP Configuration	
Technique	TDL OA-ICOS
Wavelength	2.65 µm
Scan Rate	75 Hz
Cavity Length	90 cm
Pathlength	7+ km
Target Molecules	H ₂ O, HDO
Dynamic range in H ₂ O	1-500+ ppm
Noise 1σ , 5 s.	6 x 10 ⁻⁴
dD precision, 5 s.	80 ppm 3.5‰ 2.5 ppm 110‰
Cell pressure	40 hPa
Flush Time	~0.5 seconds

UT/LS science: Water isotopes trace convective origin of water

- depletion from condensation, enhancement from ice sublimation
- core question: how does monsoon affect stratospheric H₂O?
- N. American and Asian monsoons both associated with excess moisture, but have different isotopic signatures
- hypothesis for Asia : higher RH -> less ice sublimation at altitude

 δD = per mil HDO/H₂O ratio rel. to standard ocean water

Outline

- Background
- Planned Papers
 - NAM Case Studies
 - AM-NAM Isotopic Comparison and Summary
 - Microphysical Modeling of Water Isotopes
- Conclusions

Water Isotopes in the North American Monsoon

Seven flights with isotopic measurements out of Houston

- Evidence of convective influence throughout UTLS up to 420 K
- Nearly all associated hydration events – sublimation of lofted ice
- Highest intervals of enhanced/enriched water not captured in 30 day CI

Water Isotopes in the North American Monsoon

Texas FCF, 2022-07-14: enhanced, enriched water up to 415 K

- Ozone positively correlated with water
- CO negatively correlated with water
- Suggests sublimation of overshoot ice+subsequent mixing

Water Isotopes in the North American Monsoon

First Transit, 2022-07-21: Crossing the NAM

- CO shows both positive and negative correlations with H₂O
- Ozone shows weak correlation with water
- Isotopic depletion near center?

Outline

- Background
- Planned Papers
 - NAM Case Studies
 - AM-NAM Isotopic Comparison and Summary
 - Microphysical Modeling of Water Isotopes
- Conclusions

- Data rebinned into 2x0.5 bins, colored by avg. deltaD
- Khaykin et al., 2021 show that convection can both deplete and enhance.

- ACE-FTS data binned over 0-50 N and 8-30 km for NAM and AM regions
- Right panel is NAM-AM Isotopic Difference

- ACE-FTS data binned over 0-50 N and 8-30 km for NAM and AM regions
- Right panel is NAM-AM Isotopic Difference

Models show a variety of disagreements with observation

Models show a variety of disagreements with observation

Observational Feedback into Models

• JJA 2017 tropical averages of LMDz Isotopic Ratio

=> Easy to tune δD in UT/LS. Increase of 150‰ above 300 hPa, preserves specific humidity envelope

Outline

- Background
- Planned Papers
 - NAM Case Studies
 - AM-NAM Isotopic Comparison and Summary
 - Microphysical Modeling of Water Isotopes
- Conclusions

- Following Sayres et al., 2010
- For convective hits: Initialize w/ saturation value of H_2O and δD =-300‰.
- No hits: Initialize at saturation value of H_2O and δD based on Rayleigh distillation
- If water is greater than saturation along trajectory, parcel is brought to 100% RH and fractionation occurs.
- Values from each 1k bundle of trajectories are averaged and compared to our data at observation point.

Can a simple freezing model estimate our observed isotopic ratios?

- Following Sayres et al., 2010
- For convective hits: Initialize w/ saturation value of H_2O and δD =-300‰.
- No hits: Initialize at saturation value of H_2O and δD based on Rayleigh distillation
- If water is greater than saturation along trajectory, parcel is brought to 100% RH and fractionation occurs.
- Values from each 1k bundle of trajectories are averaged and compared to our data at observation point.

Can a simple freezing model estimate our observed isotopic ratios?

This procedure captures the broad features of the water distribution but:

-Too wet almost everywhere

-Far too depleted at the highest altitudes

-Generally too enriched around 100 ppm of water vapor

-Move to 0.25x0.25 ERA5 in backtrajectories

-More complicated freezing model?

- Houston, Kathmandu, and Osan all have unique isotopic profiles, although broad features are consistent with influence of deep convection
- Vertical profiles of water isotopic composition in NAM demonstrate substantial convective influence up to 415 K
- Combine backtrajectories with, e.g., GridRad to identify episodes of strong convective influence and overshooting tops sources of NAM convection

In situ profiles show convective influence, but have unique features

Comparison to in situ measurements

- UTLS measurements in StratoClim similar to CR-AVE (Feb.) & TC-4 (Jul.) made from Costa Rica.
- AVE-WIIF measurements from Houston are 100-150 per mil enriched over the other measurements
- ACCLIP Osan and StratoClim very similar, SC slightly more depleted

In situ profiles show convective influence, but have unique features

Comparison to in situ measurements

- UTLS measurements in StratoClim similar to CR-AVE (Feb.) & TC-4 (Jul.) made from Costa Rica.
- AVE-WIIF measurements from Houston are 100-150 per mil enriched over the other measurements
- ACCLIP Osan and StratoClim very similar, SC slightly more depleted
- AM wetter than NAM (AVE-WIIF) and NA Tropics (CR-AVE & TC4) up to UT/LS base
- StratoClim measurements ~10 degrees warmer through tropopause than CR-AVE, ~10 degrees cooler than AVE-WIIF

In situ vs. ACE show consistent deviation at ~14 km

In situ measurements all 100-200 per mil heavier than ACE, origin unclear

In situ vs. ACE show consistent deviation at ~14 km

In situ measurements all 100-200 per mil heavier than ACE, origin unclear

- COLD2 CO vs ChiWIS water, colored by deltaD
- 8/19 feature stands out, high CO with some fairly strong depletion. Hinnanmor shows low CO with strong depletion.

- Data rebinned into 0.1x1 bins, colored by avg. deltaD
- In situ measurements by ChiWIS support satellite observations of enhanced deltaD at 16.5 km in the NAM

