Different behavior of ASM transport on long-lived and short-lived chemical species

Joy Yi, Laura Pan, Bill Randel With contribution from Teresa Campos, Sunran Lee, and Ren Smith ACCLIP science team meeting 2024-04-30

Methane profiles over ASM region

CH4 measurement intercomparison among IAGOS (2015-2020), AirCore(2019-2020), CONTRAIL (2015) and ACCLIP (2022)

- CH4 enhancement at upper troposphere
- Largest CH4 mixing ratios at UT during ACCLIP

ACCLIP GV vs. KMA

Courtesy Teresa Campos and Sunran Lee

CH_4 and CO vertical structure during ACCLIP

Both GV and WB-57 data

Convective Transport Origin of CH₄ at UT during ACCLIP

Courtesy Ren Smith

CH₄ and CO from AirCore on Tibetan Plateau

High CH₄ and CO transport pathway

ACE-FTS v5.3 retrieval

- Solar occulation measurement technique
- 15 profiles for sunrise, 15 profiles for sunset, totally 30 profiles/day

CH₄ ACCLIP vs. ACE-FTS

CO ACCLIP vs. ACE-FTS

ACE-FTS climatological CH₄ distribution

Combine all years from 2004-2023

ACE-FTS climatological CO distribution

Combine all years from 2004-2023

Anomalous Monsoon Transport on CH_4 and CO

Inside ASM (20E-120E) – outside ASM

CCl2F2

CCl3F

OCS

ACE-FTS N2O

ACE-FTS HNO3

Conclusions

- During ACCLIP, CH₄ reaches 2200 ppbv at UT, the high methane airmass are from northeast China
- ACE-FTS CH₄ measurements fit well with ACCLIP CH₄, but large deviation for CO
- Biggest CH₄ anomaly is above anticyclone poleward, while CO anomaly is inside