

Enhanced Aerosol Mass in the Tropical Tropopause Layer Linked to Ozone Abundance

Shang Liu¹, Troy D. Thornberry², Pengfei Yu³, Sarah Woods⁴, Karen H. Rosenlof², Ru-Sha<u>n Gao²</u>

¹Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA; ²NOAA CSL, Boulder, CO, USA; ³Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; ⁴Earth Observing Laboratory, NCAR, Bouldor, CO, USA

Background

- TTL is the main pathway for the transport of tropospheric air to the stratosphere
- Aerosols affect stratospheric water vapor budget through TTL dehydration processes by serving as nuclei for cirrus clouds
- Cirrus clouds have substantial impacts on the earth's radiative balance
- Aerosols facilitate condensation of low vapor pressure gasses such as sulfuric acid and promote heterogeneous chemistry that depletes ozone

The POSIDON Campaign

Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection Guam, October 2016

- Investigate low O₃ values in the western Pacific upper troposphere
- Investigate the transport and chemistry of sulfur and short-lived halogenated compounds
- Compare microphysical properties of convectively-generated anvil cirrus and in situ formed cirrus
- Assess the validity of chemical transport model predictions of sulfur species and aerosols

Flight Measurements during POSIDON

- Nine research flights: 0 15 °N, 130 160 °E, 0 19 km
- Extensive sampling of the TTL

The NOAA POPS Instrument

- <u>Portable</u> <u>Optical</u> <u>Particle</u> <u>Spectrometer</u>
- Single-particle detection
- Size range: 140 3000 nm
- Weight: 550 g
- Voltage: 9 15 V
 - Power: 5 Watts Gao et al. 2016 AST Cui et al. 2018 AE Yu et al. 2017 PNAS Liu et al. 2021 PNAS

Aerosol Vertical Profile over Guam

Aerosol vertical profile shows three layers with distinct characteristics.

Aerosol Vertical Profile over Guam

Aerosol vertical profile shows three layers with distinct characteristics.

Aerosol and Ozone Vertical Profile over Guam

Layer I: 0 – 5 km Lower troposphere Layer II: 5 – 14.5 km Convection influence Layer III: 14.5 – 19 km Tropical tropopause layer

Aerosol Tightly Correlates with O₃ in the TTL

Possible mechanisms for aerosol enhancement in the TTL:

- 1. Photochemical production
- 2. Isentropic mixing from extratropics

Mechanistic Insights from Models and Size Distribution

Aerosols are likely generated through the process of NPF and growth.

Mechanistic Insights from Tracers

- Contributions from both chemical production and stratospheric in-mixing to TTL O₃.
- TTL aerosols might also be influenced by these chemical and physical processes.

Parameterization of TTL Aerosol MMR using O_3

Aerosol MMR (μ g kg⁻¹) = 0.0074(\pm 2.2x10⁻⁴) x [O₃] (ppb) + 0.23 (\pm 0.049)

Limited to the observation region and time.

Satellite TTL Aerosol Data

Monthly Average CALIPSO Level 3 Stratospheric Aerosol Profiles Product

Figure Credit: Tao Wang

Aerosol in the TTL, ATAL, and NATAL

TTL: Tropical Tropopause Layer; **ATAL**: Asian tropopause aerosol layer **NATAL**: North American Tropospheric Aerosol Layer

Conclusions

- Aerosol MMR is characterized by three distinct layers over Guam
- The modeling and tracer analysis suggest that TTL aerosols likely originate from a combination of chemical production and stratospheric in-mixing processes
- Derived an empirical parameterization that may allow for the estimation of aerosol MMR as a function of O_3 within the observation region and during the observation months.
- Limitations:
 - POPS has limited size coverage
 - Lack of chemical composition measurements
 - Limited spatial coverage, temporal coverage
 - Aerosol formation: Chemical production vs mixing

Backup Slides

Modeling Results

Vertical Temperature Profile

Satellite TTL Aerosol Data

Monthly Average CALIPSO Level 3 Stratospheric Aerosol Profiles Product

