Did long-range transport contribute to high ozone in Sequoia National Park during CABOTS?

> **Andrew O. Langford NOAA Earth System Research Laboratory Chemical Sciences Division**

CABOTS - Coordination & Activities with USDA

Forest Service October 20, 2016

Where the Smog Ends Up: The Giant Sequoia Forest

The air in the Sierra Nevadas is getting cleaner—but the smog tide still rises every summer day.

By Jeff Wheelwright, for National Geographic

PUBLISHED SEPTEMBER 12, 2014

The Sierra Nevada Mountains rise above the Kaweah River in the San Joaquin Valley, an industrial-agricultural basin in California.

PHOTOGRAPH BY PURESTOCK/ALAMY

Exceedances of the ozone NAAQS* in Sequoia NP during 2016

- 59 exceedance days at Ash Mountain (515 m asl)
 - **9** during IOP1 (5/29 6/18)
 - **13** during IOP2 (7/18 8/7)
- 42 exceedance days at Lower Kaweah (1926 m asl)
 - **4** during IOP1 (5/29 6/18)
 - **16** during IOP2 (7/18 8/7)

*National Ambient Air Quality Standard, set to 75 ppbv for the maximum daily 8-h average (MDA8) set in 2008

Where does this ozone come from?

Elevated ozone layers were frequently observed above South-Central SJV during CABOTS

TOPAZ ozone and aerosol with SJVAPCD Visalia radar wind profiler

Transported ozone may have originated from Siberian or Alaskan wildfires

Transport layer did *not* increase surface ozone at Lower Kaweah (Lower Kaweah lags Ash Mountain = upslope transport)

Is this result representative?

(Number of 2016 exceedance days in parentheses)

Comparison between TOPAZ*and ARB monitors

Monitor		intercept	slope	R ²	Monito	r	intercept	slope	R ²
Visalia	(102 m)	5.5±0.5	1.06±0.09	0.91	Visalia	(102 m)	14.3±0.6	0.87±0.01	0.80
Hanford	(81 m)	0.8±0.6	1.04±0.01	0.85	Hanford	(81 m)	4.9±0.8	0.95±0.01	0.78
Parlier	(104 m)	9.5±0.6	0.82±0.01	0.82	Parlier	(104 m)	19.8±0.7	0.65±0.01	0.74
Porterville	(141 m)	8.3±0.6	0.82±0.01	0.82	Porterville	(141 m)	14.4±0.9	0.74±0.01	0.66
Seq NP-KC	(515 m)	0.6±1.1	0.92±0.02	0.68	Seq NP-KC	(515 m)	5.7±1.8	0.92±0.02	0.49
Seq NP-LK	(1926 m)	2.6±1.4	0.95±0.02	0.54	Seq NP-LK	(1926 m)	0.5±2.0	0.87±0.03	0.38

* TOPAZ measurements at 50 ± 10 m agl or 131 ± 10 m asl

Comparison between TOPAZ and Sequoia NP Lower Kaweah monitor

No correlation between surface ozone at Lower Kaweah and elevated layers

Conclusions

- Long-range transport was not a significant source of high ozone in Sequoia NP during CABOTS.
- Most of the ozone at Lower Kaweah was transported from the SJV.
- Mountain-plains circulation probably did not create elevated (≈2-3 km) ozone layers above SJV.

Acknowledgements

The TOPAZ activities during CABOTS were made possible by my colleagues at NOAA/ESRL/CSD and CIRES:

> Raul Alvarez Max Holloway Guillaume Kirgis Richard Marchbanks Scott Sandberg Christoph Senff Ann Weickmann

Visalia-Church St ozone monitor

Ozone exceedances in the southcentral SJV

- 42 exceedances at Lower Kaweah (1926 m asl)
- 59 exceedances at Ash Mountain (515 m asl)
- 51 exceedances at Porterville
- 52 exceedances at Parlier
- 8 exceedances at Visalia
- 20 exceedances at Hanford

(515 m asl) (141 m asl) (104 m asl) (102 m asl) (82 m asl)