

- Discrepancy between modeled and observed NH₃
- What are the sources of NH₃ in SLV?
- <u>NH₃ measurements in SLV</u>

HW: Jan - Feb 2009 winter (Kuprov et al. 2014)

NAA: 2015 – 2016 winter as part of Air Toxics Campaign

UU, TO, passive: 2016 – 2017 winter as part of UWFPS

By M. Baasandorj

Measurement Sites

NAA is a good site for monitoring valley-wide dispersion.

Baasandorj et al. 2017

Real-time monitoring of HAPs in both gas and particle phase: chemical speciation

- A wide suite of gaseous & particulate measurements
- Organic HAPs in gaseous and particulate phase & their tracers (I)

Organic aerosol composition by Organic Aerosol Monitor (OAM)

Inorganic ions (ammonium, nitrate, sulfate etc.) by AIM

Organic / elemental carbon measurements

PM mass concentration by TEOM

Trace gas analyzers: CO, O3, NOx

Gas phase VOC composition measurements by PTR-MS

Consistent Wind Pattern at NAA

wind spd.

Frequency of counts by wind direction (%)

- Predominant winds are northwesterly during the day & southeasterly at night
- Often impacted by lake breeze during the day
- Persistent Southerly influence day and night.
- Negligible direct influence from the refineries

Time Series of PM and its ionic composition at NAA

2015 – 2016 winter

<u>PM</u>_{2.5}

- Ammonium nitrate is enhanced.
- So is HNO₃
- NH₃ is depleted during pollution episodes.
- The ranges of NH_3 and HNO_3 are consistent with UWFPS observations.

<u>Chemical composition of</u> <u>PM_{2.5} during pollution</u> <u>episodes</u>

 NH_4NO_3 is the predominant component (60 – 80%).

Total Nitrate and Ammonium Concentrations are Comparable at NAA

2015 – 2016 winter

- Total NO3- and NH3 are comparable at the surface.
- Ratio ~ 1
- Indication of NH3 depletion near surface.

Temporal Variation of Aromatics at NAA

2015 – 2016 winter

Aromatics:

- <2 ppb on average
- Show typical signature associated with mobile sources
- Highest levels are associated with easterly winds.
- Consistent with CO, NOx diurnal profiles.

Comparing Temporal Variation of Aromatics and NH₃ at NAA

2015 – 2016 winter

Diurnal profiles of benzene and NH3 in SLV are

- similar but not the same
- Peak NH₃ lags by an hour
- Indicates transport of NH3 and sources other than mobile sources.

Highest NH₃ at NAA are associated with Southerly

2015 – 2016 winter

Ammonium_G_ppb

- Point source located south of NAA
- Transport of NH3 from Utah Valley or Southern Utah??
- Is the formation NH₃ limited??

PMF Analyses of Combined Data at NAA: Significant contribution from NH₄NO₃ and minor contribution from wood-smoke.

5 factors used in the PMF analysis

- Robust analysis due to available data points (N=689)
- Provides more realistic estimation of source apportionment of PM2.5 on average.

Near Surface NH₃ Depletion During TO South Flights

A. Franchin

NTER FINE PAR

UWFPS 2017

2017 winter

Time Series of PM and Trace Gases at UU

UWFPS 2017

No obvious trend in NH3 or HNO3.

2017 winter

In need of AIM data

What's Next?

- Back trajectory analysis of NH3 at NAA
- Perform similar analyses of NH₃ measured in 2009 & during UWFPS